- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit
[0 }1 [& n% F+ r2 o5 j3 @9 S' N/ l% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4$ K0 ~, @7 K* t/ f
% k6->k6 k7->k78 N1 j/ K# h, d: r, n' k8 y8 j
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
# \7 E/ z& \+ \! F. y+ I: H! `% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
/ _5 G. g1 g3 X. J6 Q, P% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
! @7 a+ S. M. E3 R( U% dLadt = k(7)*C(Hmf);- G7 T3 ?4 k! |- ~8 O
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);2 U; _0 z7 u2 I, z8 P. b2 W
clear all% i. P5 y( k& Z X2 O1 B k
clc
2 P G4 I# M! V7 z, B# Yformat long& Z) W( X% S; Z! ^/ \, f4 G
% t/min Glc Fru Fa La HMF/ mol/L
1 K! _- y+ v \, ?' W' [ Kinetics=[0 0.25 0 0 0 0
- Z; Y0 \4 Y6 B 15 0.2319 0.01257 0.0048 0 2.50E-04
8 [6 h$ V4 r+ u ~5 [ 30 0.19345 0.027 0.00868 0 7.00E-04# Z4 Y8 a" v5 ^2 `0 ^
45 0.15105 0.06975 0.02473 0 0.0033
9 r7 H; H' o% } ?1 z, U 60 0.13763 0.07397 0.02615 0 0.004281 z) z( Q! X2 J2 c
90 0.08115 0.07877 0.07485 0 0.014055 `$ t y6 W0 d, d1 X$ m+ Q
120 0.0656 0.07397 0.07885 0.00573 0.02143
, i" l, o: t- z) D1 Q 180 0.04488 0.0682 0.07135 0.0091 0.03623
6 c1 h! Q0 q% `9 j# a, C# x 240 0.03653 0.06488 0.08945 0.01828 0.05452
9 y1 ?% A+ ]2 F9 ]* l0 n# L 300 0.02738 0.05448 0.09098 0.0227 0.0597# Y9 @1 M' q2 {: v% t
360 0.01855 0.04125 0.09363 0.0239 0.06495];
9 {9 R. u; Y0 K- ^4 P1 ^) kk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
# e6 S: f0 g+ @0 _) W2 D* ylb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限( J+ D, E/ Q. o" n
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
# o- w4 t0 r D' g7 t7 q6 Ux0 = [0.25 0 0 0 0];! W1 h/ e" l' M2 h' b7 p
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]# \" d) {; U# W$ u( p! q/ `
% warning off% y) f) J4 D u/ b2 D. X% r' `
% 使用函数 ()进行参数估计1 i7 E0 J3 n+ N
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);9 X* }8 D W1 G: z
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
/ M0 E6 U+ O+ Hfprintf('\tk1 = %.11f\n',k(1))
# n" a' P, ^( f" }/ [4 }" ffprintf('\tk2 = %.11f\n',k(2))
& }7 _5 m' A4 m5 A- |$ O' Qfprintf('\tk3 = %.11f\n',k(3))
; Y# N0 g, U6 c+ e- C. nfprintf('\tk4 = %.11f\n',k(4))* B3 ?+ M8 y% ~) {
fprintf('\tk5 = %.11f\n',k(5))4 ^: Q/ c) u6 ^1 V
fprintf('\tk6 = %.11f\n',k(6))
% b8 d8 ]2 s% ]9 o% Pfprintf('\tk7 = %.11f\n',k(7)). f- f* i, t) E+ U4 p
fprintf('\tk8 = %.11f\n',k(8))
* s, ]5 ~0 _% r- y+ Lfprintf('\tk9 = %.11f\n',k(9))
2 |! }" X9 f1 Y$ ?, Q& U6 Efprintf('\tk10 = %.11f\n',k(10)). j1 S+ M0 {+ f- e4 S
fprintf(' The sum of the squares is: %.1e\n\n',fval)
' C9 c3 ]+ a' T5 {k_fm= k;
3 H! H \) K, W8 u5 o J' _: Z7 m% warning off
: G0 t1 e: {2 e/ |% d% 使用函数lsqnonlin()进行参数估计
p- k0 N. n1 _! G; g8 `& g, {' C( R' w[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
( C6 q/ S2 l! C2 n" @ lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
( y* d. x. t% f. L9 tci = nlparci(k,residual,jacobian);
0 J R$ D; O' s- d( h$ Efprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n'). c, g8 V; q+ T
fprintf('\tk1 = %.11f\n',k(1))* k5 A/ R% I) V3 R1 a
fprintf('\tk2 = %.11f\n',k(2))) p0 J- A4 p# M
fprintf('\tk3 = %.11f\n',k(3))3 ~' S1 A9 r: S8 V
fprintf('\tk4 = %.11f\n',k(4))6 M% i, Z% l a0 U% C$ @. g; h
fprintf('\tk5 = %.11f\n',k(5))9 C- ^9 ~2 t! G3 M
fprintf('\tk6 = %.11f\n',k(6))7 G& n+ ~6 h: s' }
fprintf('\tk7 = %.11f\n',k(7)) s+ ~! s- ~. L. K9 y
fprintf('\tk8 = %.11f\n',k(8))/ n& G: H% {: z5 t* o# p7 L
fprintf('\tk9 = %.11f\n',k(9))* r8 z7 A' g( k- U, r
fprintf('\tk10 = %.11f\n',k(10))
6 T3 w" l$ h2 ofprintf(' The sum of the squares is: %.1e\n\n',resnorm): v7 E y) C( Q, m8 i. X
k_ls = k;
- c* c7 L4 u: n- s+ Qoutput
5 q+ z8 Q9 {% p7 V! o; Iwarning off
1 K2 K* A- S3 H& X9 z4 y q4 }- S% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
/ B8 n" O: I# e6 ]/ Q2 ^ wk0 = k_fm;
+ Q) N$ }6 t8 m0 R( J& j[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
" g/ z h! J. \; ~6 A/ t+ d lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); ) d0 M/ s! u0 H0 b5 Q# l; _
ci = nlparci(k,residual,jacobian);
|! x2 J0 j6 f8 _) D2 \fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
; x: Q; l: s& t: Y/ a% cfprintf('\tk1 = %.11f\n',k(1))( x' k+ n( |9 k+ U- E
fprintf('\tk2 = %.11f\n',k(2))
& Y; {% B* D3 u5 K" h, J1 ufprintf('\tk3 = %.11f\n',k(3))" j8 p# [* g' J: U
fprintf('\tk4 = %.11f\n',k(4))
) L2 k8 _5 t# G, D8 Ofprintf('\tk5 = %.11f\n',k(5))9 @' z o4 v: ?. ` T
fprintf('\tk6 = %.11f\n',k(6))# n9 I# ~! x& g; ~
fprintf('\tk7 = %.11f\n',k(7))1 i G4 |, ?0 N" V' q" v
fprintf('\tk8 = %.11f\n',k(8))
' F& u! I7 N' \6 Afprintf('\tk9 = %.11f\n',k(9))7 E; ~+ N, k$ X1 T! _6 J+ m
fprintf('\tk10 = %.11f\n',k(10)); _! I7 l" c, `
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)8 b- s2 V& [- C1 b$ X$ u9 D) h
k_fmls = k;7 l+ Y1 z7 g& _! g( u& r' B
output
( c5 ]0 B5 Q! r# b& |2 ltspan = [0 15 30 45 60 90 120 180 240 300 360];
6 c1 U6 d7 ~- C/ ^ H[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
* v- ~* c5 S2 W* r7 j. }# e/ ffigure;) {( A/ }8 f8 v& E4 p* i# r q
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real') I# v4 S) z! T
figure;plot(t,x(:,2:5));# J! c: B# |' P; L
p=x(:,1:5)
8 I0 H9 b" G$ I; V7 a/ D) b) ?+ Nhold on
! J$ \% k( |5 pplot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
4 I9 ~$ c; O+ G8 \/ m! {) {' _8 l% N# Z6 ^6 Z& X# Z9 h
: [# _$ U1 h. c$ a* e4 [; B
. N' d$ |$ @5 X8 Yfunction f = ObjFunc7LNL(k,x0,yexp)% v c$ D, L/ H9 X# m
tspan = [0 15 30 45 60 90 120 180 240 300 360]; p: I" e+ G* `0 p
[t, x] = ode45(@KineticEqs,tspan,x0,[],k); 0 i# g0 d3 Q. \0 x+ z
y(:,2) = x(:,1);4 u# t+ i& n& K" C: A. w
y(:,3:6) = x(:,2:5);
k# `# O- N+ T& E$ F: I! Af1 = y(:,2) - yexp(:,2);
- n% @6 z6 k' u. p. vf2 = y(:,3) - yexp(:,3);
3 ?( ~5 j) X* D' d$ S2 ff3 = y(:,4) - yexp(:,4);
5 e- Y- g' D; L1 \5 m/ z* Nf4 = y(:,5) - yexp(:,5);
) ?3 f" W0 r% F7 Hf5 = y(:,6) - yexp(:,6);
) H1 V1 b! d& d! @f = [f1; f2; f3; f4; f5];. f& |3 m( k! p$ V6 N, ]
3 B. _4 c y* q/ @4 W* w% u- c5 }: y3 V& \$ x; Y) p) m
& Q2 w8 I+ ]: y$ T2 n9 \+ Hfunction f = ObjFunc7Fmincon(k,x0,yexp)5 X) e2 ]+ f2 z1 g
tspan = [0 15 30 45 60 90 120 180 240 300 360];* R4 O2 h k) p, g) j# ?
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
9 b) W- Q4 {, Z4 O& Ay(:,2) = x(:,1);
: p) n k- \- V# j5 ?: Z. |& H" ey(:,3:6) = x(:,2:5);
% i1 }2 g# l) }( T9 J. Vf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...; u: E1 \7 X0 J' f% u+ v
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...5 n2 m" N8 {6 R: ^4 c
+ sum((y(:,6)-yexp(:,6)).^2) ;# I7 S& L, T# v
0 n; u: N5 D! Q
* m y2 w- w5 z @, ~8 t/ R. q$ T! h9 f4 G3 N Q
1 Y) p( w4 N, wfunction dxdt = KineticEqs(t,x,k)* t3 W. u( d5 w0 b
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);" o6 W% H) g, i# d
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
+ Y a0 \& x& u; V" V0 p" AdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);8 H" O- q5 H, j# {/ Q7 T) v, K
dLadt = k(7)*x(5);! |) a. q+ _( | Z N, q) p) z
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
" j6 S2 t& a2 [1 [4 c# {dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
+ x" ]9 `/ o/ U0 E6 N& f# t. K/ j4 s7 Z. l3 F5 ^7 r
) A- H1 S+ y( R" H5 K$ _9 C
|
zan
|