- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
|---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit P9 R; U8 `* u9 B1 O! I7 M3 j+ r
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k42 H7 I' f) ~: R1 }7 U
% k6->k6 k7->k77 I8 T% M2 ?% `7 X! H5 M
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
3 C+ J- O# y1 q3 |' F: W& O% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);: ^. g( x3 P, ^+ C3 i- B
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);: Z3 ]; x) U9 d1 |
% dLadt = k(7)*C(Hmf);, h( \( W, W" K5 U
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);8 y$ e, p* j" `* u7 z6 {
clear all
. r: x% F/ ~! i3 P1 y2 Nclc
8 c0 e4 s( v$ w1 `! g# wformat long
0 |' G% c* f; ?9 o1 D P7 Q% t/min Glc Fru Fa La HMF/ mol/L
3 M2 R0 b6 d) S3 L8 l, B7 [" h Kinetics=[0 0.25 0 0 0 0
3 l1 Z% n/ @" e o3 @7 _: W 15 0.2319 0.01257 0.0048 0 2.50E-042 T( p/ w) R9 {7 U& |; d
30 0.19345 0.027 0.00868 0 7.00E-04
6 J& V' t) y* l6 K' W 45 0.15105 0.06975 0.02473 0 0.0033
! N" [* Y% Q6 O9 m4 j2 m5 w! E7 Y 60 0.13763 0.07397 0.02615 0 0.00428" O) V( @! U8 b
90 0.08115 0.07877 0.07485 0 0.01405
% _2 |$ ~: v3 b# N! @" b$ E8 {; H 120 0.0656 0.07397 0.07885 0.00573 0.02143; u& \- B; [+ d
180 0.04488 0.0682 0.07135 0.0091 0.03623
3 Q8 _. d X& k 240 0.03653 0.06488 0.08945 0.01828 0.054523 P+ A, ^) V4 o4 [
300 0.02738 0.05448 0.09098 0.0227 0.0597
8 d4 i$ R# Y/ c3 g' F1 M6 S 360 0.01855 0.04125 0.09363 0.0239 0.06495];# s0 y& i# e& s' o* |
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值: M7 ?. H X |' d
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
# Q z3 \( q" P6 {7 _ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限$ R: v9 S; p" ^# |) e
x0 = [0.25 0 0 0 0];0 O, Z) B' n1 l
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
6 Y. @3 R( E G2 _7 p# i% warning off9 x$ o( d* {& M6 R0 n1 V* s- l+ U- s
% 使用函数 ()进行参数估计
( v6 F2 R, T3 n[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);+ [6 K; x% E' b/ E# c
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')- V9 T! _) q! I' R; o
fprintf('\tk1 = %.11f\n',k(1))* m* `( d& |& m4 P! p
fprintf('\tk2 = %.11f\n',k(2)). M! z$ C! Q. z8 v8 E; ]0 b1 x
fprintf('\tk3 = %.11f\n',k(3))
8 q. F* o6 j( Rfprintf('\tk4 = %.11f\n',k(4))
2 n0 a2 G3 _, H! [fprintf('\tk5 = %.11f\n',k(5))
* {1 ?+ t) \3 z& v; U [: Zfprintf('\tk6 = %.11f\n',k(6))* @/ \: ]; o7 J* R/ e
fprintf('\tk7 = %.11f\n',k(7))) W! d. U# M" f- X
fprintf('\tk8 = %.11f\n',k(8))
3 o% r2 \- S' |+ M3 bfprintf('\tk9 = %.11f\n',k(9))
3 h. u8 @. }9 Q: \* Lfprintf('\tk10 = %.11f\n',k(10))* X- F7 Z+ p9 @) |1 t- n8 N
fprintf(' The sum of the squares is: %.1e\n\n',fval)+ Y4 D# d: b8 Y! Q1 y' C
k_fm= k;& x7 F( h6 Y* I" X* h
% warning off1 m0 X3 U7 s9 l2 d6 ^5 y+ Y+ O
% 使用函数lsqnonlin()进行参数估计* S1 J; r; T8 d5 G( [
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
' o9 a2 x+ B' H lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); : j& D# N+ Z8 t+ X- D
ci = nlparci(k,residual,jacobian);
5 @3 I. }; W$ t) u. @- xfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n') |; {) a8 f& F; U0 B0 h; g% k
fprintf('\tk1 = %.11f\n',k(1))
! c9 ~& L; Y4 ]& R8 C b# p$ g4 tfprintf('\tk2 = %.11f\n',k(2))
0 h& E/ P3 C) H/ Y( o( Z& [fprintf('\tk3 = %.11f\n',k(3))2 d Z8 B# @* n7 P4 I. j7 b Q
fprintf('\tk4 = %.11f\n',k(4))
6 Q2 I0 a7 B- {5 n4 q% X: f# T9 \& _1 Dfprintf('\tk5 = %.11f\n',k(5))$ B, V/ t/ T# n4 J) {; W9 H* _
fprintf('\tk6 = %.11f\n',k(6))
1 J. F# A G" H8 |! j- Ufprintf('\tk7 = %.11f\n',k(7))
" f& b# B E; W, T) c, \+ T& Wfprintf('\tk8 = %.11f\n',k(8))
- W& ?6 ^' M* G+ [: L1 ?fprintf('\tk9 = %.11f\n',k(9)) g( l( R% W0 J6 `8 @$ N* I% M
fprintf('\tk10 = %.11f\n',k(10))
3 O" P) h# i4 j' y; _( @- i; ^/ Ifprintf(' The sum of the squares is: %.1e\n\n',resnorm)
4 Q5 v8 w8 Y H. p' J a3 I7 ^* ^' vk_ls = k;. ~/ W3 `: z: j: j
output: ^$ d- G s+ r2 e
warning off* Q1 n3 F. G! m: K" b
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计5 Z( F- ^7 [7 K$ ~0 K# t* ? K, s
k0 = k_fm;
2 n% }4 I W& }8 n: I4 G+ m- I[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
8 C* I9 U. t4 `3 Q' w) A- Q! x% ? lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
8 F% U; ?' u3 R9 U, V: ?ci = nlparci(k,residual,jacobian);
+ ?* Y K6 o5 r+ b2 }0 vfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')) [7 u# M/ @, ^9 t. L
fprintf('\tk1 = %.11f\n',k(1))
% V2 b5 J, x' `6 h6 i2 Afprintf('\tk2 = %.11f\n',k(2))/ X' U4 g Z& @# x! ?+ [
fprintf('\tk3 = %.11f\n',k(3))* b$ E1 ^4 `* {% r
fprintf('\tk4 = %.11f\n',k(4))" N1 A4 A/ X6 e' c7 d- X" l
fprintf('\tk5 = %.11f\n',k(5))4 F& {( \) N9 h9 D' q' {
fprintf('\tk6 = %.11f\n',k(6))3 y$ u, r5 u; w4 F
fprintf('\tk7 = %.11f\n',k(7))9 I: G5 j( { z& e* c
fprintf('\tk8 = %.11f\n',k(8))8 N& ]/ `7 }2 [8 [7 h9 E7 b% z
fprintf('\tk9 = %.11f\n',k(9))
, G0 X- q* ?! V, U' v- Vfprintf('\tk10 = %.11f\n',k(10))1 K3 A$ Y& e* B5 c
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)# k" D9 c0 W: r
k_fmls = k;( u$ H# m# u- K% S
output! I) F- A6 r, b4 g3 T: |
tspan = [0 15 30 45 60 90 120 180 240 300 360];: V1 e- J' A6 |0 j
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); & \" }" u9 e2 g1 j
figure;; k+ l/ M) E% o* u, v8 M6 Q
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')2 _7 F A: B- j% h: i
figure;plot(t,x(:,2:5));& P2 c9 r( I# G" `! C5 H e' f/ m8 j
p=x(:,1:5)$ @! t3 f2 O+ p9 @, F2 o1 E! Z# x$ h) x
hold on
9 @/ |0 k' ]& c" J0 ^! `( D! `0 I. h3 h0 ]plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')8 n# L* x* Y$ t8 m9 ^
4 x0 E: t1 |: V# _; w- T! Y3 w& A' l! M3 Z0 A- K0 U4 b2 @
0 n1 j, T( V% Y. @5 G
function f = ObjFunc7LNL(k,x0,yexp)
; j" Y% t" e- @) s0 i# a- ytspan = [0 15 30 45 60 90 120 180 240 300 360];
& e* {4 B0 j0 S! n4 i8 |[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
% B+ Q: Q! o- M# i, oy(:,2) = x(:,1);
* W2 B3 K- l3 D% G; }2 i% Z. dy(:,3:6) = x(:,2:5);
& ~1 @* Y4 m% `, M% e: jf1 = y(:,2) - yexp(:,2);+ }9 y* s% H/ z7 \8 k
f2 = y(:,3) - yexp(:,3);
4 [8 s9 {' f( a" K" |# o$ Lf3 = y(:,4) - yexp(:,4);; _) d) D# C8 W" w
f4 = y(:,5) - yexp(:,5);
8 U) L1 q+ D, @. m |& if5 = y(:,6) - yexp(:,6);
+ {- V5 z& R7 H# O. W0 g2 K' }f = [f1; f2; f3; f4; f5];) Y! c# W( A3 G, `. C6 l0 T! z4 k
' m9 j" O5 [. F [: c% q* G
F" D: A4 u* A2 S5 @
: m, F/ N1 m' w4 U" e: B2 [function f = ObjFunc7Fmincon(k,x0,yexp)( ]+ O# a5 n2 R a4 |8 H
tspan = [0 15 30 45 60 90 120 180 240 300 360];3 l6 j0 k( } P* W7 t
[t x] = ode45(@KineticEqs,tspan,x0,[],k); % L9 I& Q4 |/ S4 D
y(:,2) = x(:,1);
8 x O+ }7 u: i3 E1 X9 U, s5 hy(:,3:6) = x(:,2:5);
7 l! ?/ ~; x4 Z+ N7 N6 u2 d* Z7 mf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
! G2 I3 }/ K; A/ P' h + sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...4 A" ]" B# w: G9 o4 \4 |
+ sum((y(:,6)-yexp(:,6)).^2) ;
9 ?! j- ^6 {, M7 T8 T5 w% A; m) e0 Y' z6 p8 m
9 u) m, L% ]9 v* W$ {4 z# Z
% c& x( j4 l7 `. q* p& }0 l
0 D0 p! Q, L n3 Ofunction dxdt = KineticEqs(t,x,k)+ g# ^7 j: W2 I+ z s$ d @1 g+ t: q
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);; R5 j/ m) d+ k8 @) k" q
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);! M% n7 m: h% h/ T
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
* l5 K1 j; Y: R; B* p2 YdLadt = k(7)*x(5);8 d' _4 a. j0 |8 k0 x/ l3 D* b8 \" X
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);7 r8 n' Z& V+ V/ a& P' C9 o
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];( M, b0 G! P6 e+ x# p: r: ~1 p2 Y3 @
2 Q1 q& ~* \. y1 S3 E
, T% f/ N/ ~+ ^2 v Q |
zan
|