5 \0 b7 k# n0 P. Z; X3 E
import numpy as np3 l6 h6 {6 g& i* } Z l
import matplotlib.pyplot as plt, ~5 r& u2 Y+ B6 Z- V: S M
from scipy.optimize import leastsq `- j" N) n+ n& Y5 m
# ^' T; z* R' x8 A8 l/ A
$ q) ~1 a: B+ j5 B: y# 我们要拟合的目标函数' c/ I# k: H- e4 V. Q3 t9 e
def real_func(x):. J3 O7 h) o6 ^% g' G+ {
return np.sin(2*np.pi*x)5 a& c+ |3 S7 G- n1 _7 W5 u
/ a. a% O$ c( R. O: j# N7 r8 _
/ W# [0 N" \( o0 ?' Z' E8 ?
# 我们自己定义的多项式函数 + u; e d2 c& p( Qdef fit_func(p, x):( i5 j7 L" X( _* w& N* b
f = np.poly1d(p) # np.poly1d([2,3,5,7])返回的是函数,2x3 + 3x2 + 5x + 7& S1 d& ~7 u7 S/ Z
ret = f(x): `- ^+ y4 _) a
return ret ! p( J1 O- S; ~9 T* l+ V; V! h, T4 d. R. P9 N) G1 [% N
5 T0 o% D% y+ R# A v s# 计算残差 k' N, [1 g' ^ N2 ^# I
def residuals_func(p, x, y): 6 x d2 L- I6 A6 t ret = fit_func(p, x) - y9 Q% n. `" |) H. H5 X7 e* E5 W
return ret # U; f4 p4 W5 \6 e1 x# l9 ~' X' } E9 f( D; X
. {" I. s1 j' D/ D- y8 z5 z$ o
def fitting(M=0): * N+ O1 n' Q. r& h """ + _! {4 l( {+ m# w+ G b M 为 多项式的次数7 h, D f( g0 p
""" g2 O0 E. U' I5 F! B: ~ # 随机初始化多项式参数 ) x. \7 I( G& @7 P8 Q p_init = np.random.rand(M + 1) # 返回M+1个随机数作为多项式的参数$ s& F3 q8 x# @
# 最小二乘法:具体函数的用法参见我的博客:残差函数,残差函数中参数一,其他的参数& P4 C, B n: k! x
p_lsq = leastsq(residuals_func, p_init, args=(x, y)) ! {& j8 E r1 \ # 求解出来的是多项式当中的参数,就是最小二乘法中拟合曲线的系数% C( H" n1 f7 B8 W. |' s( j9 x
# print('Fitting Parameters:', p_lsq[0]) & l0 }) A! \1 E& r! `& n4 } return p_lsq[0] $ D6 M- Z! x' _- s- H3 C' I( H# x" w# y& c, s
% H6 W5 G" ~/ i' ?3 o/ r: Y$ A# 书中10个点,对y加上了正态分布的残差 7 w1 ~7 ^+ X6 a' m2 ?x = np.linspace(0, 1, 10)! t* S, d2 D; |% y: z
y_old = real_func(x)$ w. R" |) _; U0 f1 R0 B! h
y = [np.random.normal(0, 0.1) + yi for yi in y_old] 4 w' h- z+ J7 U4 Q6 Q3 v/ b* {; g) P% t1 h) E
4 ~8 Y0 s' H, }" j: @9 h
x_real = np.linspace(0, 1, 1000)* a# R/ P8 s! m4 T# l
y_real = real_func(x_real)- a7 Q7 E' @: q7 p0 q2 B0 u
6 S, J; g6 a* Y$ h& Q% ?& _
3 L) g7 l* Q/ w" L; m. p. pplt.plot(x_real, y_real, label="real") 6 I Y) H& }: mplt.plot(x, y, 'bo', label='point') , G0 |; q- I, u# fiitting函数中args=(x, y)是条用的是上面定义的10个点的全局变量x,y, S" \( z1 S& |! {
plt.plot(x_real, fit_func(fitting(9), x_real), label="fitted curve")6 _3 p: S! Y) [$ M' F s
plt.legend(). n) s4 H6 c. _- i" P* e# B. w
plt.show() h* e' F; F( \" }% J4 E7 R ( k$ \1 w. T" P3 CM=0 - t* O. r( M5 `! t2 u 7 x7 C; V( O8 B" Q