2 Y. d) ?( @3 M: i% a7 B. w& U0 x q$ ?7 n3 n1 U# F- N; |
W是参数,就是最小二乘法求得到的系数 ' N0 n! R3 N Q& ?% clambda是regularization,是自定义的系数。, u5 X2 ^( ^8 p
import numpy as np 8 L! o c0 Y) ^import matplotlib.pyplot as plt; ^7 O; ?3 q4 E S: Q
from scipy.optimize import leastsq 8 E6 }1 d3 q0 ]( A# z' X, n # f$ p: u: T: Z" g M" f. y& E 2 u/ g# F3 C: i! ?, k7 G% m# 我们要拟合的目标函数 2 {+ t" ~! l) M X1 j5 ^def real_func(x): 1 k Z: f' ?# b4 D/ K return np.sin(2*np.pi*x) , h& ?% z d3 C& h9 C3 p( ~- P2 O+ Z! M
/ E& z8 Z) t- G( P: k0 _# 我们自己定义的多项式函数 - n2 B! V" |5 B* L6 Y$ v! xdef fit_func(p, x): ! P z' q$ {7 }# y% j4 K& j f = np.poly1d(p) # np.poly1d([2,3,5,7])返回的是函数,2x3 + 3x2 + 5x + 7' v' b) Z- [. t( V* `7 V. W
ret = f(x) 9 M% E- z. j" M( W$ q q return ret8 x( y& O" `9 u c& q4 H
8 k9 z/ Z1 O2 l& I1 @! z- T & s/ e! i# Q. I6 ?& Q O. r9 B# 计算残差 ( u+ T: |* c* R- w6 @def residuals_func(p, x, y):7 _5 [8 H7 C5 M4 v, j( m$ c
ret = fit_func(p, x) - y : @' \3 l! }* |8 J; Z4 I! W% J; ` return ret 0 F, |4 h8 i0 }4 a 6 q% E ^4 }5 w6 i/ t) z% D4 K0 T9 R7 r( G' i
# 返回残差和正则项 * }5 p# [0 K4 F8 G1 c5 edef residuals_func_regularization(p, x, y): 4 |8 d9 D& b' Y( f# f ret = fit_func(p, x) - y $ @4 M; H+ P$ ]& i& @" a ret = np.append(ret, - k1 ^/ H" m9 @0 y( x) [& U6 g np.sqrt(0.5 * regularization * np.square(p))) # L2范数作为正则化项) O2 @8 e, F1 C* q0 X
return ret 4 R, L, @9 T# j5 q5 t 1 j8 u/ y6 s- P' t9 z3 Y4 ]2 F' ^ : g5 `3 g. u4 |+ |8 c( P* wdef fitting(M=0):& b$ R6 G, [) h
""" : d& I1 y2 }( {4 n: H M 为 多项式的次数 ( R/ w4 |+ t- V; _ """ , e0 j; t6 b/ |# F U3 z # 随机初始化多项式参数 1 i1 u% r2 p0 W2 v p_init = np.random.rand(M + 1) # 返回M+1个随机数作为多项式的参数 ! H9 }% X+ D' n8 G. g% Y) I4 z( Z # 最小二乘法:具体函数的用法参见我的博客:残差函数,残差函数中参数一,其他的参数7 m2 b- K, ?; D* |5 ]( _
p_lsq = leastsq(residuals_func, p_init, args=(x, y))8 Y0 B' D2 p6 I- z8 w
# 求解出来的是多项式当中的参数,就是最小二乘法中拟合曲线的系数 3 Q' ^4 N4 f, r* S% a$ ] # print('Fitting Parameters:', p_lsq[0]) " k/ @( `0 F/ C return p_lsq[0]+ T4 C' Z3 v3 { V8 E8 k) u/ M4 q
. f0 d$ y5 `5 b6 Q [3 Z% Q9 U; Q3 E6 K" I
# 书中10个点,对y加上了正态分布的残差0 {& N/ _/ n. U" U. e1 k2 u
x = np.linspace(0, 1, 10) 3 s+ ]6 t' L! ?+ l( @9 vy_old = real_func(x)$ @, d- i( [) n" d
y = [np.random.normal(0, 0.1) + yi for yi in y_old]; p7 K K( ]4 M4 f
! {, |' w8 E9 V3 G( c8 x+ x, h! p; G& _+ M2 B8 z0 p# ?, K
x_real = np.linspace(0, 1, 1000) 6 A8 ^- ~ @( O7 V8 h, ly_real = real_func(x_real): J$ |; F5 {7 t' R) ?
8 J* k! _1 B) x7 c$ J1 ^
8 l( `0 e3 v# D
# # 画出10个散点,sin图像,和拟合的曲线5 I' T" u7 u5 S Y2 y' _& [) c- H
# plt.plot(x_real, y_real, label="real"): u: ?# C( ^4 G r6 Q' I+ S k
# plt.plot(x, y, 'bo', label='point'): J" ?2 i+ d2 Q
# plt.plot(x_real, fit_func(fitting(9), x_real), label="fitted curve")# N- [' u+ ]4 _) ]# y1 X
# plt.legend()% F" l! u/ j: d& D" Y( D
# plt.show() ) ?5 f6 T* ]7 H: Y( ^6 x5 m 4 {5 t1 P. P* P8 l) A" b, n8 v+ ^ O) K8 G% n/ c1 C1 g6 X! Y
# 画出添加正则项的曲线8 k& v8 f, p1 v8 f$ f3 J1 W
regularization = 0.0001 5 B+ V h/ [* B) o; Z+ Cp_init = np.random.rand(9 + 1)4 A' w J4 r/ Q) I1 D! t
p_lsq_regularization = leastsq( ) a% h2 \) R+ Z3 ]- z. O residuals_func_regularization, p_init, args=(x, y)) 2 u. s" |9 q1 ] t) P% e) @ 6 |, Q$ n$ a% a, s# v1 S * ~' A! `+ u( _# 画出原sin图像,不加正则项的图像,加上正则项的图像,10个点的散点图* d7 q3 ?# N$ }( H/ Y" T/ G4 m
# 不加正则项和加上正则项都是9次方,10个系数9 a0 k9 _5 Q0 g) j/ q% J& ]
plt.plot(x_real, real_func(x_real), label='real') ) n9 G3 H, N( Q$ x/ aplt.plot(x_real, fit_func(fitting(9), x_real), label='fitted curve')3 r! e3 T7 ?' u: g# N' F d1 Y2 G. q
plt.plot( ' _8 ^$ l4 }7 W, K& b x_real,7 Z% X M1 |0 I6 p, i5 j- }: P
fit_func(p_lsq_regularization[0], x_real)," G: f: m, q' z! M4 ?" ], s
label='regularization') 7 C$ B+ G& F: }( Eplt.plot(x, y, 'bo', label='noise') 8 ]) i7 M. C0 x8 j7 j: aplt.legend() + t2 o+ E3 z& C$ ] A. |. X9 b2 oplt.show() ! C6 v" R$ }9 m0 o" e % |8 u. v5 T1 T7 o$ @1 h+ A