QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1037|回复: 0
打印 上一主题 下一主题

[课件资源] Traffic Prediction for Intelligent Transportation System using Machine Learning

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-10 16:06 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Traffific Prediction for Intelligent Transportation

    . s3 J7 R. W! {$ z, m, ?8 X! }; m# `
    System using Machine Learning
    ' t0 [, @* D. [

    8 ^' x* m* J. b% y( P8 u. V4 a
    # }) R9 l; c# k6 b' Y0 c$ g, }. ~$ |0 K: S9 S3 L

      k2 [5 E" l1 j, a: _: DThis paper aims to develop a tool for predicting
    3 Y1 b$ L; G( N3 Taccurate and timely traffific flflow Information. Traffific Environment
    ' J& g4 L: f+ m7 l1 `involves everything that can affect the traffific flflowing on the
    / H: t# U1 i/ ^& L2 mroad, whether it’s traffific signals, accidents, rallies, even repairing
    ; n" T& {8 K' ^9 y8 [of roads that can cause a jam. If we have prior information3 b7 h- d7 b5 C* W2 @
    which is very near approximate about all the above and many
    & D8 ^' R* M4 ~1 ~4 imore daily life situations which can affect traffific then, a driver
    , \' O3 z' o5 ?, `6 Gor rider can make an informed decision. Also, it helps in the
    " E$ h3 S9 C" Q5 G. {2 A* }- cfuture of autonomous vehicles. In the current decades, traffific data5 W% f+ D- c7 [7 E! a+ _  H8 Q9 h
    have been generating exponentially, and we have moved towards$ j5 z: V9 m0 G6 y' @1 M
    the big data concepts for transportation. Available prediction
    $ \' k, M9 T1 d0 b2 xmethods for traffific flflow use some traffific prediction models and; [. p* k$ K+ M' X2 ?+ j4 r
    are still unsatisfactory to handle real-world applications. This fact
    6 }0 L8 \& U7 @) S5 J" `4 rinspired us to work on the traffific flflow forecast problem build on* `2 [5 G  a9 w# \2 C7 e7 U
    the traffific data and models.It is cumbersome to forecast the traffific. u* j: ~! d; Q& |1 H( z! J
    flflow accurately because the data available for the transportation* B; q# ?: l) E+ l
    system is insanely huge. In this work, we planned to use machine
    & n7 R. e1 j! V# w8 k3 q( rlearning, genetic, soft computing, and deep learning algorithms& p6 x# p8 f, P
    to analyse the big-data for the transportation system with  {5 ]8 g* v  B" d7 x' O* A( x
    much-reduced complexity. Also, Image Processing algorithms are
    - K! E* W$ y/ G+ e. Kinvolved in traffific sign recognition, which eventually helps for the5 @6 |8 G8 n: e" m
    right training of autonomous vehicles.
    , g6 ?9 e3 N* g7 g1 j
    - Y4 P! O7 A4 G) F- z
    + F1 w* c  B' B3 n: p% T7 H, X9 H0 L

    7 a' v; R0 z1 U: a0 e, o2 `" J

    09091758.pdf

    425.77 KB, 下载次数: 1, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-13 04:45 , Processed in 0.404657 second(s), 53 queries .

    回顶部