QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1029|回复: 0
打印 上一主题 下一主题

[课件资源] Traffic Prediction for Intelligent Transportation System using Machine Learning

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

81

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-10 16:06 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Traffific Prediction for Intelligent Transportation
    0 c- v& f+ B: s0 J. P2 X
    System using Machine Learning

    ! l* ?* m) A4 ]. f  S5 e9 l+ @" C* `% h- H2 O

    7 p" }: n* ]9 w* r2 U3 ~* V" J
    - ^+ }9 i, G+ w( A+ c0 V% w/ \6 |2 c% w( P  L8 p' k
    This paper aims to develop a tool for predicting
    ( n" h( R  a5 z5 C- l4 Naccurate and timely traffific flflow Information. Traffific Environment
    1 }% X/ ^  N1 O4 J# o  Uinvolves everything that can affect the traffific flflowing on the
    " w2 E0 }3 C2 [road, whether it’s traffific signals, accidents, rallies, even repairing* |3 l/ P. W- P0 m/ `9 E. X
    of roads that can cause a jam. If we have prior information
    % i2 f( W' l0 n4 A3 Mwhich is very near approximate about all the above and many; R) B1 l2 v2 \! @# a& d
    more daily life situations which can affect traffific then, a driver4 T" V% g6 d2 j8 Q" `
    or rider can make an informed decision. Also, it helps in the
    # J+ I3 }: g% }3 R* J' M  Ofuture of autonomous vehicles. In the current decades, traffific data! P& L. h2 k8 d- ]* _
    have been generating exponentially, and we have moved towards
    4 n, B; }  K# m' X( R& }5 H" k8 y, Ithe big data concepts for transportation. Available prediction# v; z& Z/ y' j) l
    methods for traffific flflow use some traffific prediction models and
    & `" _( \0 Q8 o, e: c& M% Ware still unsatisfactory to handle real-world applications. This fact
    * w: y" H1 {' K7 q% \inspired us to work on the traffific flflow forecast problem build on0 ]/ \" T3 Z$ G7 L- k6 G
    the traffific data and models.It is cumbersome to forecast the traffific
    & o3 O) A  X# c; ]5 ^& Sflflow accurately because the data available for the transportation
    & u5 h6 a# x) q, [; O& ?% Wsystem is insanely huge. In this work, we planned to use machine
    8 P% f% S, @1 Z- H8 i& k% llearning, genetic, soft computing, and deep learning algorithms
    * o0 {3 w" P5 V* d$ hto analyse the big-data for the transportation system with. r5 m2 k" ]  R2 s' y3 {
    much-reduced complexity. Also, Image Processing algorithms are
    / ]9 x7 M& T  o: c' Qinvolved in traffific sign recognition, which eventually helps for the
    0 H5 L) U/ X, y, w, Hright training of autonomous vehicles.' _3 w5 e6 C! S4 j

    / a8 f  H" O% D* B3 R# M" |" ~6 A' G4 I. y& D
    % X* z3 B- o8 h

      ?) R/ }) Y& |1 G% R# _. ]( W  ^7 q5 s6 p* Z

    09091758.pdf

    425.77 KB, 下载次数: 1, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-31 20:20 , Processed in 0.467798 second(s), 53 queries .

    回顶部