QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 810|回复: 0
打印 上一主题 下一主题

[其他资源] Traffic Prediction for Intelligent Transportation System using Machine Learning

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-12 16:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Traffific Prediction for Intelligent Transportation

    # K# _' B* c( p1 E3 ]* h
    System using Machine Learning
    + L, q: D- C, z" T7 Y( S

    % z  E! Q  L( ~$ }0 w0 R1 R" y% @4 E# r! R; C5 P

    / U. W8 x; |6 y/ k+ y) A2 Y2 c6 G$ U8 n7 `1 Q

    # t8 i. j$ Y$ R' G+ A+ aThis paper aims to develop a tool for predicting
    - G$ {1 @  `) d! Y; f+ \accurate and timely traffific flflow Information. Traffific Environment4 t/ o$ l+ x/ A0 Y0 h, o9 R
    involves everything that can affect the traffific flflowing on the# K3 G$ _3 N; g( s# B: Y" p
    road, whether it’s traffific signals, accidents, rallies, even repairing/ `% i6 S$ Q+ h
    of roads that can cause a jam. If we have prior information
    : q% D9 V7 a" s/ e7 B1 }7 mwhich is very near approximate about all the above and many% y( k/ z; V6 \; n
    more daily life situations which can affect traffific then, a driver
      V& q% s5 P+ }( ror rider can make an informed decision. Also, it helps in the9 p$ A# A: J" _4 T  t5 Y1 h. B
    future of autonomous vehicles. In the current decades, traffific data! c0 e; a4 d' w3 ?1 ^
    have been generating exponentially, and we have moved towards
    3 x9 Z$ k! N/ O; o" h% `+ ythe big data concepts for transportation. Available prediction: @: Z" T7 A& }3 G! q5 K0 Z
    methods for traffific flflow use some traffific prediction models and8 @* ]+ c2 {5 O1 \
    are still unsatisfactory to handle real-world applications. This fact. t( i- P) }! T. \* T4 A
    inspired us to work on the traffific flflow forecast problem build on, f% R% P% A- o+ G( @, N& H
    the traffific data and models.It is cumbersome to forecast the traffific
    8 T7 P' }: x) Yflflow accurately because the data available for the transportation
    ( T: e9 `7 s3 ]& }system is insanely huge. In this work, we planned to use machine. y0 I, J+ f8 `, K7 _/ @
    learning, genetic, soft computing, and deep learning algorithms, t* ^9 k0 L+ l, F$ x6 l; r
    to analyse the big-data for the transportation system with
    9 f' B5 @) ?$ Ymuch-reduced complexity. Also, Image Processing algorithms are
    ( F# I9 L! ^4 [+ kinvolved in traffific sign recognition, which eventually helps for the
    & R: ~' _( _, |) K0 fright training of autonomous vehicles.
    / G! p) U% \+ K) `/ m' {7 F5 [: e( x' E

    % _, W% D$ F- S# F) T9 d8 G/ D

    Traffic Prediction for Intelligent Transportation.pdf

    425.85 KB, 下载次数: 2, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-11 22:50 , Processed in 0.360303 second(s), 53 queries .

    回顶部