QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 894|回复: 0
打印 上一主题 下一主题

[其他资源] Traffic Prediction for Intelligent Transportation System using Machine Learning

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-12 16:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Traffific Prediction for Intelligent Transportation
    0 x' B  l: t5 c; _3 \
    System using Machine Learning

    - z3 k6 ?9 G% Q* p4 a
    + D0 J9 t4 y9 r) a
    , ]  j4 }  i) a$ L1 u% v" Z3 [, f, a, E, K( J) E6 m* x5 E7 n

    8 n& m! z" m* x( i$ D9 F) [
    $ \- b9 z2 A* v6 n0 PThis paper aims to develop a tool for predicting
    - g; M$ h! n2 m) i  Taccurate and timely traffific flflow Information. Traffific Environment
    ) t$ D/ x9 r# U4 d) N1 K# kinvolves everything that can affect the traffific flflowing on the
    ( ?3 P; ?8 A0 j6 G3 o5 o8 Uroad, whether it’s traffific signals, accidents, rallies, even repairing
    5 X  o) M$ e/ Q7 m6 Fof roads that can cause a jam. If we have prior information3 t. [& x) I1 j" W1 B4 C
    which is very near approximate about all the above and many# c! q7 J6 u% b( H5 H1 T! N
    more daily life situations which can affect traffific then, a driver
    : h* x! G6 e0 H+ g- D8 |1 gor rider can make an informed decision. Also, it helps in the4 p) ?) S) I! I- N
    future of autonomous vehicles. In the current decades, traffific data% v" }+ l( c4 l+ _  O
    have been generating exponentially, and we have moved towards
    % R3 j9 G$ C# othe big data concepts for transportation. Available prediction* O3 }$ W  ^1 `8 ]9 R
    methods for traffific flflow use some traffific prediction models and8 ~* s! G1 R3 _# `% y, B* O
    are still unsatisfactory to handle real-world applications. This fact
    ) d1 \  @# F: R% cinspired us to work on the traffific flflow forecast problem build on
    + U) l) P: d9 _8 {  u. ^" ethe traffific data and models.It is cumbersome to forecast the traffific
    * A7 @8 \: K5 Y4 U& M6 U; Pflflow accurately because the data available for the transportation
    % R' a" l9 h/ Y' B, fsystem is insanely huge. In this work, we planned to use machine9 ^# f8 M' K# D
    learning, genetic, soft computing, and deep learning algorithms3 i; `# p6 e* H1 o! N7 P7 s* P  q
    to analyse the big-data for the transportation system with2 v# C- N* X' G+ P! c- e
    much-reduced complexity. Also, Image Processing algorithms are
    ! a6 P" m3 t6 K' C0 E' C( _involved in traffific sign recognition, which eventually helps for the
    1 H. a6 V, @4 q+ E6 Kright training of autonomous vehicles.
    4 j, B4 f9 [- b2 o! r3 p( h8 d  y( _# g8 z/ E4 c
    ) t7 n3 \" x5 a9 T+ G( {

    Traffic Prediction for Intelligent Transportation.pdf

    425.85 KB, 下载次数: 2, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-12-22 01:46 , Processed in 0.783912 second(s), 54 queries .

    回顶部