QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 798|回复: 0
打印 上一主题 下一主题

[其他资源] Traffic Prediction for Intelligent Transportation System using Machine Learning

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

81

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-12 16:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Traffific Prediction for Intelligent Transportation
    ! e$ e9 O: ~4 {# ], {1 f4 E
    System using Machine Learning
    / l* y. N# K. ~- d3 u

    2 @. z- U: W; R/ p0 T1 Z+ N+ J  O: M: B& W; B( }4 O8 o
      I  q7 K8 p7 g6 g! ]1 Z

    + K4 O' i+ S5 I, v' V, i. H* }) u+ c# U8 A
    This paper aims to develop a tool for predicting
    * T' E; Y, y2 ~# Daccurate and timely traffific flflow Information. Traffific Environment
    % C3 Z7 x# W& x' x9 Y& linvolves everything that can affect the traffific flflowing on the$ a* e, R2 b6 |, D
    road, whether it’s traffific signals, accidents, rallies, even repairing
    6 q- d( a3 H1 u* E* V8 ^1 yof roads that can cause a jam. If we have prior information5 Y, x1 n8 e& p$ z: u. k" s
    which is very near approximate about all the above and many
    + A: a' t5 U- E5 W/ v; i  f) M) Wmore daily life situations which can affect traffific then, a driver
    ) _$ ?$ y$ u$ }. Cor rider can make an informed decision. Also, it helps in the
    % h! p) Y; u9 l' `, j) b6 {future of autonomous vehicles. In the current decades, traffific data2 G! Z: x5 A/ k4 j* p/ P
    have been generating exponentially, and we have moved towards  R; H7 R0 y# c: |9 m9 [6 h
    the big data concepts for transportation. Available prediction# S$ G/ t1 P7 w% r
    methods for traffific flflow use some traffific prediction models and& B0 ]* M& ^5 |9 Y
    are still unsatisfactory to handle real-world applications. This fact
    2 C! X( l$ q- @, C8 iinspired us to work on the traffific flflow forecast problem build on& N/ u- ?) M/ f" E8 I$ I8 Y
    the traffific data and models.It is cumbersome to forecast the traffific
    + `# j* |5 b+ f' [* w! b/ ]flflow accurately because the data available for the transportation6 Z2 H+ N7 Z0 b9 A2 M7 M/ p: f
    system is insanely huge. In this work, we planned to use machine' n) w# ]: ]' x# H7 O
    learning, genetic, soft computing, and deep learning algorithms
    , c! g/ P1 k/ a% oto analyse the big-data for the transportation system with, V9 y# L. t  W6 [& F8 z; F( Q0 ~
    much-reduced complexity. Also, Image Processing algorithms are: |& j$ x4 }4 r* u$ G' e& k
    involved in traffific sign recognition, which eventually helps for the
    8 a3 A( m- S, n6 W( ~0 ~; `3 Z2 Xright training of autonomous vehicles.
      l- c# V, |9 X+ G) T- ]* o. B/ |- [1 F* }5 f
    . n: z& w: p$ D! @  I- Q* o( k: y

    Traffic Prediction for Intelligent Transportation.pdf

    425.85 KB, 下载次数: 2, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-31 00:34 , Processed in 0.506037 second(s), 54 queries .

    回顶部