QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2237|回复: 0
打印 上一主题 下一主题

[其他资源] RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimizat...

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-16 15:20 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    RouteNet: Leveraging Graph Neural Networks for

    2 j5 ]: x' a4 J& h. h  H( V. }6 B
    Network Modeling and Optimization in SDN
    . l2 M7 o8 m1 o1 E- g/ A

    ) I& D0 C& F% P! {" s% ]
    0 p) l9 n# q" V. l9 U# P  ?Network modeling is a key enabler to achieve
    ; J( z  }3 j$ v- Q1 z6 Neffificient network operation in future self-driving Software
    7 c* {0 Y) o4 J3 xDefifined Networks. However, we still lack functional network
    2 n" W7 c; m; r  x6 J4 @models able to produce accurate predictions of Key Performance* z- e; x! s$ c9 U
    Indicators (KPI) such as delay, jitter or loss at limited cost.
    ; s$ Q. m' [9 [4 E/ K5 kIn this paper we propose RouteNet, a novel network model based
    ; h( O+ M2 V4 C* ton Graph Neural Network (GNN) that is able to understand7 [) c# L( J( M. Z
    the complex relationship between topology, routing, and input
    $ y4 f, i& P9 ~& W) t/ vtraffific to produce accurate estimates of the per-source/destination
    8 Q1 Q% U5 Z7 W) h4 P. F4 L* Tper-packet delay distribution and loss. RouteNet leverages the7 x- ~8 I1 b& t3 }) w- |
    ability of GNNs to learn and model graph-structured information6 }+ C( T4 A) K4 e% X+ o( a
    and as a result, our model is able to generalize over arbitrary
    - n. a( o- u7 P2 j7 Utopologies, routing schemes and traffific intensity. In our eval
    2 P9 a  [: t4 M1 Cuation, we show that RouteNet is able to predict accurately/ ?) z0 w' n# v" F  Y; ?
    the delay distribution (mean delay and jitter) and loss even in/ Z& l0 f' g% t' L0 W: J; d0 K
    topologies, routing and traffific unseen in the training (worst case
    5 q4 a$ e$ g) H( ?0 pMRE = 15.4%). Also, we present several use cases where we
    % u# F+ P9 n: }5 s% S& `# `+ aleverage the KPI predictions of our GNN model to achieve
    - P) L1 y; D! L% Yeffificient routing optimization and network planning.
      w/ N# g: S$ Q. }8 s
    7 o7 O% R) C% I: Y1 [; D# v; J' v$ l

    08934670.pdf

    999 KB, 下载次数: 0, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-14 09:16 , Processed in 0.297744 second(s), 53 queries .

    回顶部