QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2239|回复: 0
打印 上一主题 下一主题

[其他资源] RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimizat...

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-16 15:20 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    RouteNet: Leveraging Graph Neural Networks for

    ) D- W# x2 G: ?% o! c
    Network Modeling and Optimization in SDN
    ' u2 z( d0 ~2 {, I9 S& a4 ~

    , I, u7 V+ w# T8 y) H/ P' j/ K
    0 _9 D% X% j- F# a+ hNetwork modeling is a key enabler to achieve. u& ]5 Z' j5 D9 C
    effificient network operation in future self-driving Software
    9 \. \5 N4 I1 Y! e& f) e- G& E" jDefifined Networks. However, we still lack functional network
    ! G/ V! L  A3 D( B& J9 Ymodels able to produce accurate predictions of Key Performance2 E  _3 u+ a! K6 f2 g1 ~
    Indicators (KPI) such as delay, jitter or loss at limited cost.
    % L/ k; T$ Z% p" i7 Y0 V3 gIn this paper we propose RouteNet, a novel network model based1 G7 o1 s# G5 A2 L) X3 g3 N6 J" Q
    on Graph Neural Network (GNN) that is able to understand
    ' b: B! Z0 Z+ @( A, @/ ]the complex relationship between topology, routing, and input
    * r' z8 K2 w, f$ E$ c) b$ otraffific to produce accurate estimates of the per-source/destination! f( r6 I: H: u: X
    per-packet delay distribution and loss. RouteNet leverages the
    2 z' p2 m1 h! L/ }7 K+ H( A5 b- m% qability of GNNs to learn and model graph-structured information  J% y9 H" B5 E4 ^. A& m3 Z
    and as a result, our model is able to generalize over arbitrary
    : M& E9 }$ V+ P) F$ H; {8 Wtopologies, routing schemes and traffific intensity. In our eval: F. i" e3 X; b2 v* z+ a/ l( w
    uation, we show that RouteNet is able to predict accurately
    , ~* M% E, h& H. y9 Xthe delay distribution (mean delay and jitter) and loss even in# h1 r) V2 n) j6 C( G* s. I4 B
    topologies, routing and traffific unseen in the training (worst case' W6 s; }1 D, K7 Z
    MRE = 15.4%). Also, we present several use cases where we- F  Y' q  [: p& `% H- B* M
    leverage the KPI predictions of our GNN model to achieve
    ) X- U# U+ a5 P/ E5 |9 {effificient routing optimization and network planning.
    7 T( _" ?  q% I, c' |3 P. {0 |1 u! f( ^( \

    1 G8 t! O2 w% i& o7 v

    08934670.pdf

    999 KB, 下载次数: 0, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-14 14:25 , Processed in 0.357348 second(s), 53 queries .

    回顶部