QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2230|回复: 0
打印 上一主题 下一主题

[其他资源] RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimizat...

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-16 15:20 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    RouteNet: Leveraging Graph Neural Networks for

    - F% J9 @. b4 L
    Network Modeling and Optimization in SDN
    , E! c+ \: c. R1 P- B, Z5 D2 Y* i
    ! b& w* m2 Y. K! h7 r6 {: S& A

    % d- X6 G6 h% ]0 nNetwork modeling is a key enabler to achieve
    $ M4 \* B- v- M8 `* L. Zeffificient network operation in future self-driving Software) L$ {2 C& h4 {9 P! J$ t
    Defifined Networks. However, we still lack functional network
    0 S) d( {* H; [2 X# u2 Tmodels able to produce accurate predictions of Key Performance
    ( V& C; y7 L1 ^* K- b  lIndicators (KPI) such as delay, jitter or loss at limited cost.' `, K7 d( g. q
    In this paper we propose RouteNet, a novel network model based6 I* ^& V9 S. \+ M4 \
    on Graph Neural Network (GNN) that is able to understand) `( j. o3 @4 Y! T. {- }
    the complex relationship between topology, routing, and input
    0 v' Z9 i; H5 i) F2 q  Qtraffific to produce accurate estimates of the per-source/destination: c- q) [2 i* `) ?8 t, A) H
    per-packet delay distribution and loss. RouteNet leverages the& J% o2 a! q' q) n8 N9 M
    ability of GNNs to learn and model graph-structured information
    # {% U9 N- v9 ^$ d6 Wand as a result, our model is able to generalize over arbitrary7 b/ x( Y- X5 c" y
    topologies, routing schemes and traffific intensity. In our eval/ b/ E. o4 U8 ^: L7 S
    uation, we show that RouteNet is able to predict accurately0 X1 d7 T1 B& t! P- O
    the delay distribution (mean delay and jitter) and loss even in+ [. n" ?" @* N1 `, j
    topologies, routing and traffific unseen in the training (worst case+ x( F( [% G* Q7 G& u* |# ^
    MRE = 15.4%). Also, we present several use cases where we* }! n3 Z* p+ c6 q' |: o6 K; f
    leverage the KPI predictions of our GNN model to achieve
    9 w0 ~$ H2 ^5 Y- Ieffificient routing optimization and network planning.
    * j7 s4 Y8 T9 \6 s$ {: F. z5 Q6 |" v/ I. o  O( X# m

    & e7 l; [8 \/ {% `  \

    08934670.pdf

    999 KB, 下载次数: 0, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-10 06:52 , Processed in 0.440614 second(s), 53 queries .

    回顶部