QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2987|回复: 10
打印 上一主题 下一主题

Goldbach’s problem

[复制链接]
字体大小: 正常 放大
数学1+1        

23

主题

14

听众

2533

积分

升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    跳转到指定楼层
    1#
    发表于 2013-12-6 12:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Goldbach’s problem                    Su XiaoguangAbstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:[code]<SPAN style="FONT-FAMILY: Arial; COLOR: #333333; FONT-SIZE: 12pt; mso-font-kerning: 0pt; mso-ansi-language: EN" lang=EN></SPAN>[/code]A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1DeducedD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    + f' H! n* S& @" |! j  | Key words: Germany,Goldbach,even number, Odd number ,prime number, MR (2000) theme classification: 11 P32 Email:suxiaoguong@foxmail. com/ m/ f/ ^# j( v
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    数学1+1        

    23

    主题

    14

    听众

    2533

    积分

    升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem (pdf)
                           Su Xiaoguang
    * l! ~# J! e, n1 c) f     
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}

      u- K$ F9 U4 E% q
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2533

    积分

    升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem  P8 w9 d* ]  V2 q# }0 f! I5 y
                        Su Xiaoguang* V4 x) O( p- }# K; J' K
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    . p* P, k/ m" k+ r. {% ~3 m! p6 h5 L# J* b0 |6 Z! y
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    9 ?( ?: @% G8 a/ @# PC=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1# [7 o' m) j* m, _% S
    Deduced
    ; l& J/ ?8 g, fD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 4 q2 o$ r( [3 ]2 L; p
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}/ q. ]. G2 Z$ `- C# H

    ) }( e: r& Q7 u$ C1 `$ iKey words: Germany,Goldbach,even number, Odd number ,prime number,
    ; V. H/ s, V6 F. h7 S- z4 ?MR (2000) theme classification: 11 P32 ( w" _1 w5 G- ?, {$ s
    Email:suxiaoguong@foxmail. com$ Q( d  s/ e; [# D& m- o. g9 p% e
    § 1 Introduction
    1 Y0 B: k- B; ?          In 1742, the German mathematician Christian Goldbach (1690-1764), Put forward two speculated about the relationship between positive integers and prime number,using analytical language expressed as:
    ; \. r, O, P$ W(A)For even number N
    . G- J9 I2 K6 K" o" ]$ s9 ~) R$ {' X8 B9 O* J" s; W# }( _
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
    % M' C; A4 ^  R, h0 j/ ~: q9 i8 ]/ ^  F8 T# e! T/ Q) U
    (B)  For odd number N) E9 |$ G/ b" T! ~' @

    ( Q! \; \* f& }/ e7 kN\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>04 h! W0 w0 k+ C
    6 y7 S4 M5 e( R/ i: ~, P7 K
    This is the famous GOldbach conjecture。If the proposition (A) true, then the proposition (B) True。So, as long as we prove Proposition (A), Launched immediately conjecture (B) is correct7 {/ `7 H7 k% K" U1 Y( E
             
    1 M3 m0 j! R5 `$ f§2 Correlation set constructor; p1 b& e: K: W' I
    A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    6 ~. u4 n+ g) v# F& E4 L* X A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    5 y2 R7 p) V) o/ V& Z5 |* a A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}7 m6 {# B/ `: ?
    \cdots
    # F4 Y% S4 @) [/ N+ J; HA=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    % G" ?2 s9 L6 v( n+ t5 ~p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      $ c1 \( |! ]" |5 n9 A4 `/ n1 h; |" ]
      §3    Ready  Theorem
    & S) O: o' l( E1 ?% i* g1 D' xTheorem 1
    3 E) o& P8 k: `- n- L: `. D4 uM_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
    1 m8 x$ u7 {+ a1 A- D7 K  .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
    , H+ R3 P9 d2 N1 i. Q/ H\because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots3 O) ^1 z7 p, t* [+ r6 Y. h" T3 h
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots; H; T: }2 C$ i, Q4 K: a' i, T
    M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots0 e- i: n) v, y4 d2 J& Q4 s( d2 R
    \cdots& N7 i6 c0 \' h' f
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
    $ b2 ]5 ^! ?0 ^# o1 C     Theorem 2 (Prime number theorem)
    % p/ J$ M" A! I. K, \% p1 f7 p/ D( c) H( b- T* b4 p/ b$ C& |
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
    $ V5 \+ x" \% A5 [% O2 P" t     Theorem 3  For even number x, [0 \. X- L  G3 V5 B  F% p9 `
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]   u; b& S. i4 T7 H8 ?7 H+ n
    Proof: According to Theorem 1, (1)  
    8 a, H. n/ }; [0 j  \because A_{i},A_{j} Countable,
    ! I' s5 d3 |8 j' F! ]5 G+ ~ \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2) 6 Q+ h/ a! W1 N; U
    Similarly, according to Theorem 1, (2), C countable
    2 A% D0 Q9 A- D: T" W( @ Suppose- C0 X8 k) S7 k  I% b4 \3 ~
          M_{1}(x)=minM(x)
    9 k8 X6 J  H, M: W7 E: `6 P; [5 J6 naccording to (2), Then we have: G$ M4 P8 e: ?' q: F5 {* g
    . M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]+ o3 b, X! [, l  L( G) l3 w0 t; x
    Theorem 4  For even number x
    8 a* r: L7 J1 I5 i: {( m% Px>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        (3)
    ( S& X4 f% q% AProof: According to (2),Then we have, w' V" n( p* G2 r5 E
    M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
    4 b, |# O, e- B6 X0 E4 T* h6 K( J     Suppose
    % O8 S0 g, K: M" R$ Q  n0 [  W: w2 [      M_{2}(x)=maxM(x)! E# P% f+ M- x$ K; K# ?
    \therefore M_{2}(x)
    & {9 W9 i/ B4 N, a" d' n- K& q2 P=\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    6 K1 n  L, c5 ~6 k- M=4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    ) Q2 h9 `, w2 R& b§4 Goldbach's problem end
    3 I6 W: {4 B) t9 B) uTheorem 5  For evem number N
    0 @: f- K6 E) S7 c" ?9 e6 wN> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}* @$ }5 k% [1 I/ y0 v: G8 I( [
         Proof: According to Theorem 2
    . i: R: V; }. {7 h8 I4 IN> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)- N: y1 }& T! H9 N
    Let   c_{1}=min(\alpha ,\beta ),# {( E' W! [  d
    According to Theorem 3,Then we have8 j$ X- A1 f8 x2 y8 v9 b5 t0 s/ w
    D_{1}(N)=M_{1}(N)-M_{1}(N-2)$ i  N, F/ L1 B! m6 L+ @3 j& O
    Clear
    ! S" b$ v& k7 eD(N)\geq D_{1}(N)
    & P, w5 S; J- o. a  v\because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    ( [1 ^- |! S' G) N\because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)" y# x: K& ?$ A  @
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)$ |, K+ [5 w% z  d
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow 9 r& d; J0 T+ z" S
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    & _8 D5 b2 L1 w2 m" L  b# S Theorem 6  For evem number N
    + p5 n6 i7 Q9 `. n3 n# U8 e* T/ dN> 800000\Rightarrow D(N)\leq / S. c' c- p6 L8 j
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    9 |5 A. k$ B& D7 x# e) r/ i0 pProof : According to (4)( ^+ a! E6 r+ r3 f9 W" ~/ e
    Let  c_{2}=max(\alpha ,\beta )2 d. u8 f1 ]; i! K/ j
    According to Theorem 4,Then we have
    - T* e* @0 ]: A: J0 K* K9 _D_{2}(N)=M_{2}(N)-M_{2}(N-2)1 T4 ?- `! ~" G5 ~
    \because D(N)\leq D_{2}(N)4 ~; X* g& B8 Z. f* C4 Z
    According to (5), Then we have
    ( f# E2 p1 J  |  w1 T: wD(N)\leq
    ) Z) g9 M" i6 F* y8 y  [1 s8 e5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}- E$ y: `6 G- U/ G$ n
    Theorem 7 (Goldbach Theorem)  
    ) V# ]$ |2 g( V/ P' E4 U5 ?! WFor evem number N, A5 g  K9 X  h: ^5 P# L8 H
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    9 y" d$ T0 ?/ c* AProof : According to Shen Mok Kong verification
    8 l" }5 U! }- M1 F4 }9 ]6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1$ y1 M# h) T# g/ F# W; U9 V6 g
    According to Theorem 5, Theorem 6, Then we have
    8 r. i- k2 W- Z+ d% NN> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}/ m3 @! u  T  U" i
    \therefore N\geq 6\Rightarrow D(N)\geq 1
    % M1 N# v  v; Z. }, PLemma 1 For odd number N
    / K. H$ Z- x) {7 }9 NN\geq 9\Rightarrow
    : l) j+ g$ @, ?) z+ sT(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    ) V0 K, [, j- OProof et  n\geq 4
    ) O# _/ @0 h! ]9 a( k/ S\because 2n+1=2(n-1)+33 v6 f$ p+ ^5 m6 C; d! U
    According to Theorem 7,  Then we have; O8 p1 f! [; a  j6 \! W$ _
    N\geq 9\Rightarrow T(N)\geq 1# h' @( e" k- _8 v5 C* H  K" J) m8 T
    ( @( D  ?% o4 \. V0 F7 z) M

    0 k4 _) V$ B7 F# f' g6 d    References
    5 E' o0 K9 t: R$ w[1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
    * u8 `; H8 Q' @/ D[2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.% V1 @+ B- o! C$ ?/ t
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.3 `& _  q% a" i, J4 o
    : Y( G4 ]5 n, z4 P' s5 d3 x$ p
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2533

    积分

    升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    阅读本帖需具备阅读LATEX文件的知识,作者有一word文件上传,有兴趣的读者可下载阅读。
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2533

    积分

    升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem
                        Su Xiaoguang
    摘要:哥德巴赫问题是解析数论的一个重要问题。作者研究
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    § 1  引言$ F( U0 K. T; ^" }0 I( \# b
          1742年,德国数学家Christian Goldbach提出了关于正整数和素数之间关系的两个推测,用分析的语言表述为:
    (A)对于偶数N
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
    (B)  对于奇数N
    N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
            这就是著名的哥德巴赫猜想,如果命题(A)真,那么命题(B)真,所以,只要我们证明命题(A),立即推出猜想(B)是正确的
             
    §2相关集的构造# B6 T3 z! {7 ^: ?; @3 m) Q
    A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    \cdots
    A=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
      §3    预备定理
    / N& o4 Y+ I& l4 b- U9 C4 U7 ~
    定理 1
    M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
      .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
    \cdots
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
         定理2 (素数定理)
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
          定理3  对于偶数x
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
    证明 根据定理1, (1)  
      \because A_{i},A_{j} Countable,
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
    9 T3 m' s( [' r8 L  l类似地,根据定理1,
    (2), C可数  
    # k2 H) Z+ v: q/ ~; e# R* B
    设      M_{1}(x)=minM(x)
    根据(2),那么我们有.( V  s( z. ?/ b  T+ l7 S" m4 |( @
    M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
    定理4  对于偶数x
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        3
    证明: 根据(2),那么我们有+ r7 ]9 F) U1 z) b) W% _
      M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
         设   M_{2}(x)=maxM(x)
    \therefore M_{2}(x)
    =\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    =4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    §4 Goldbach's problem 终结' }& k# x& K7 m/ @& U! J
    定理 5  对于偶数N
    N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
        证明: 根据定理29 y, X! P8 z, V2 f
    N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
    让  c_{1}=min(\alpha ,\beta ),
    根据定理3,然后我们有
    8 k9 M5 O' U) X      D_{1}(N)=M_{1}(N)-M_{1}(N-2)
    显然5 W  ~" X# l7 j% B4 s! ~
           D(N)\geq D_{1}(N)
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    \because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    定理6  对于偶数N
    N> 800000\Rightarrow D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    证明: 根据(4)
    让  c_{2}=max(\alpha ,\beta )
    根据定理4,然后我们有, W9 N0 ]$ m/ V: U9 V
           D_{2}(N)=M_{2}(N)-M_{2}(N-2)
    \because D(N)\leq D_{2}(N)
    根据(5),那么我们有
    # I% _% I4 @2 T0 P6 \+ S       D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    定理7 (Goldbach Theorem)  
    对于偶数N
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    证明: 根Shen Mok Kong 的验证
      x/ F. g4 m; D3 h5 G
          6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1
    根据定理5, 定理 6, 然后我们有( ^3 q! I9 O! r; i; K' ]  j
          N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    \therefore N\geq 6\Rightarrow D(N)\geq 1
    引理1 对于奇数N
    N\geq 9\Rightarrow
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    证明: 让 n\geq 4
    \because 2n+1=2(n-1)+3
    根据定理7,然后我们有5 B1 P% r4 v- \; _
          N\geq 9\Rightarrow T(N)\geq 1
        References
    [1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2533

    积分

    升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    我国数学家华罗庚,闵嗣鹤均对M(x)的下界做过研究,潘承洞,潘承彪对D(N)的上界做过研究,他们留下了遗憾,也留下了经验.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2533

    积分

    升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    2 f! A. ]  y8 d9 t9 K1.83150(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 4.36166\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    . F, S( \) x5 A* B
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2533

    积分

    升级  17.77%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    若N>800000,
    ) }6 l) o8 Q# D, h9 b则   1.83150(1-1/logN)[N/log^2(N-2)]≤D(N) ≤4.36166[1+2/logN +o(1)]×! G& ^' v/ [8 P& M
    N/{log[(N-2)/2]log(N-2)}
    2 F9 ?2 }6 T6 y' ]1 V, R这就是哥德巴赫公式,有兴趣的读者不妨检测一下。
    回复

    使用道具 举报

    11

    主题

    12

    听众

    1709

    积分

    升级  70.9%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    回复

    使用道具 举报

    11

    主题

    12

    听众

    1709

    积分

    升级  70.9%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    本帖最后由 1300611016 于 2014-1-4 09:08 编辑
    9 U& P8 ]1 D  I/ C$ h9 p: U' P$ r( N! v$ L
    太烦,可以用一个简明的形式,如·同偶质数对·形式展开详细见http://www.madio.net/thread-202136-1-1.html
    ' Y# F! Q% E  B0 \一般的用简明浅显的形式表述更容易推广,如能用初等数学表述这一问题,可以尝试一下。但不妨碍专业研究。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-22 10:56 , Processed in 0.739688 second(s), 100 queries .

    回顶部