QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3129|回复: 10
打印 上一主题 下一主题

Goldbach’s problem

[复制链接]
字体大小: 正常 放大
数学1+1        

23

主题

14

听众

2538

积分

升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    跳转到指定楼层
    1#
    发表于 2013-12-6 12:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Goldbach’s problem                    Su XiaoguangAbstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:[code]<SPAN style="FONT-FAMILY: Arial; COLOR: #333333; FONT-SIZE: 12pt; mso-font-kerning: 0pt; mso-ansi-language: EN" lang=EN></SPAN>[/code]A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1DeducedD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}& R& j, f; E! J7 s5 l  {
    Key words: Germany,Goldbach,even number, Odd number ,prime number, MR (2000) theme classification: 11 P32 Email:suxiaoguong@foxmail. com5 z9 P4 Y: x& A2 H- [
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem (pdf)
                           Su Xiaoguang; O4 p  Z$ o) R% _/ p# o5 z
         
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}

    & I: ~# E4 @. S0 c- N6 M
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem* Z# S* L% ]. q/ o  ]
                        Su Xiaoguang
    $ c4 D' t0 l. SAbstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    6 V; r7 v7 v3 ~* K9 E# a* ]1 h% ]8 ^$ b6 U; V% v' }8 G( F  y
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.2 U' a* {  h: ~8 ^
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    8 u6 Q1 R' Y; p% W. nDeduced  L+ p* Y" I7 g# c' ~
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    9 r" L( m$ H9 Q; v1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}0 Y* }; w4 [$ W; C1 P/ z
    : B" c$ g* Q  e
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    # T8 L% }" |  W% m# g* o: bMR (2000) theme classification: 11 P32
      a6 t9 b' h( `$ e6 ~Email:suxiaoguong@foxmail. com
    . Y5 c! v! M0 j' @8 ?§ 1 Introduction) @- C, y7 a- h( {. ?3 o! c
              In 1742, the German mathematician Christian Goldbach (1690-1764), Put forward two speculated about the relationship between positive integers and prime number,using analytical language expressed as:  c  q9 V" r  v- w+ v( I% d
    (A)For even number N
    9 ^. |; S4 L" L( R# J' U* o. A; [2 O: D6 G2 \/ L" i
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>02 W/ y# `7 s2 A* v" c
    7 o( n& Y1 B; S* z0 r
    (B)  For odd number N0 `/ f1 H1 L+ d1 X- `
    / L8 a% M4 E! m
    N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
    % \1 k' r4 L( j1 r5 o" g
    1 n% M2 W- \. Q0 NThis is the famous GOldbach conjecture。If the proposition (A) true, then the proposition (B) True。So, as long as we prove Proposition (A), Launched immediately conjecture (B) is correct+ C1 G7 F( ~0 A2 y
             
    3 `/ }1 S: F4 y$ K§2 Correlation set constructor
    * F4 f/ ]$ I5 s" o- L, ]A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}  R/ P3 O0 T( [& o0 G; O0 B
    A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    9 z5 k. ?# |# V1 G A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    * m( c- ]% [! J$ N7 G \cdots
    : y$ i3 q0 {5 Y% n. k2 ^1 kA=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    . ^; o/ c# g4 U1 c% j3 ?# T; Jp_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
    / E3 i7 f( [9 P1 O# i  §3    Ready  Theorem
    1 [) E* g3 W/ FTheorem 1' `0 Q, ?! c3 W+ e0 G' D& }
    M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
    0 x8 t2 r6 Z7 a* p3 v0 L  .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}6 s) z" ^; P5 V* b1 l! i+ x1 A1 i
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
    + m- W5 f( i. O1 o) }- ]( [M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    4 `, \4 y) s0 W( F% N4 `5 JM_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
    0 @3 D& S% X1 ~2 e\cdots5 G' U+ p0 n7 C; h/ X  @; ~
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable- N, |' z( S" l% d* N
         Theorem 2 (Prime number theorem)) ^5 u9 `; e/ J: r  C' u/ [

    8 z& g+ P$ P. h3 i\pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}3 j7 ^" |* O& @$ |2 T6 n7 l' \% y
         Theorem 3  For even number x8 H) V* Z# X! u( L
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ] # B6 R( p" ]6 B& F: u
    Proof: According to Theorem 1, (1)  
    7 q: J" W- S. _5 Z- w# I. m  \because A_{i},A_{j} Countable,) j3 K6 q7 j5 i# u3 K; G
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2) & [, H1 c1 J! }' A
    Similarly, according to Theorem 1, (2), C countable) O/ T( o9 ]( V8 G. l* m
    Suppose; z* l# u( \' L  h- |* I9 K
          M_{1}(x)=minM(x)
    ; X5 a! I, Q. f4 Xaccording to (2), Then we have# A* P$ Z# v+ B) [9 `3 `! s
    . M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]* E( I0 W! W. p# F' H7 x
    Theorem 4  For even number x. y5 ?) V2 r& r5 F3 H: ]5 F  ^
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        (3)9 l0 y8 Q  B( `! J7 m
    Proof: According to (2),Then we have+ a4 \/ ?9 I/ W) T6 ?2 W
    M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
    % _( k2 o* O, O, A     Suppose
    8 b1 b2 A4 F5 E: W' z      M_{2}(x)=maxM(x)
    0 M: [7 B6 d. E' Q\therefore M_{2}(x)
    ' x9 N/ ]( N" T=\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    . F' E, N7 C& r4 X3 O. i9 i=4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    5 [4 Z2 E$ h+ v- L§4 Goldbach's problem end
    + X$ P* b1 D) Y4 T  jTheorem 5  For evem number N
    5 X# k  |1 g: T5 g- fN> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    " D* e, N: t; ?/ e     Proof: According to Theorem 2
    # D( u- g+ q/ T" X" b+ @N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)7 m. s- P/ D7 A; a+ P; ~) l) f4 S
    Let   c_{1}=min(\alpha ,\beta ),8 c) g; u8 m  M0 n* a3 w/ y% S
    According to Theorem 3,Then we have
    " W" |3 H( [% ?5 h6 |8 A* {6 cD_{1}(N)=M_{1}(N)-M_{1}(N-2)
    , z; {1 V. C! c6 K5 L- iClear
    ! M' i  o4 T3 l) i& ND(N)\geq D_{1}(N)- x8 D* `' C' Q- G' z) T
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt- K0 G  V; M5 X! H+ W$ ?
    \because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)" A) P' e. c9 W) J
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
    # b& Z# {8 s# F. T: H0 rN\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
    * r! F' D7 f. LD(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}. p$ V, h: i  r: Y9 j( ^" X
    Theorem 6  For evem number N/ t  R$ \  k) ^' M5 Y
    N> 800000\Rightarrow D(N)\leq
    ( F+ u& S9 d; P: f5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}4 z5 V. l+ G6 h) I+ ^! Z% w
    Proof : According to (4)
    8 l, j9 b& A* }' E0 L9 e! kLet  c_{2}=max(\alpha ,\beta )
    9 V/ u9 M: e* U! j3 tAccording to Theorem 4,Then we have1 Q4 u# O) c: H2 K; P  b0 E& ~# E
    D_{2}(N)=M_{2}(N)-M_{2}(N-2)2 J5 h" b! X. V5 d. k
    \because D(N)\leq D_{2}(N)' h1 A. [- |1 q! O7 W) d
    According to (5), Then we have
    + {& P8 e- @. h. s; N! LD(N)\leq
    # q+ F7 i9 {3 v# l5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}* q2 T5 ]9 x5 C* s& N( w. J/ j
    Theorem 7 (Goldbach Theorem)  
    7 }: h" T' h- `3 iFor evem number N5 P' Q, y# R* J( W' m
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
      {# \4 ^, {8 ?8 Y5 HProof : According to Shen Mok Kong verification9 ]; _. G, R7 y* B) Q+ s' O
    6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1- a/ k5 y" b/ B, P7 c( {; d! F
    According to Theorem 5, Theorem 6, Then we have
    " t4 J6 a& l/ F' ]N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    ; a% B  k' A0 C6 [& Q5 n+ ]0 b\therefore N\geq 6\Rightarrow D(N)\geq 1
    2 W9 E3 Y2 D& ?4 E; N, A) m+ j/ ^Lemma 1 For odd number N
    ) H3 i- K( o& m1 Z5 d% Z2 UN\geq 9\Rightarrow
    # y& ]% D5 ~# n0 sT(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    1 x* N$ z* ?/ Q, y# N8 VProof et  n\geq 4. H& |+ q  u! D! ?
    \because 2n+1=2(n-1)+3* a6 `) h2 l5 w# w9 H
    According to Theorem 7,  Then we have0 m% Z5 R  h2 G( E2 t; |  {, P; c
    N\geq 9\Rightarrow T(N)\geq 1
    6 x/ t  f- q/ x1 _# }- p
    9 r2 S3 S$ p3 D$ `. U9 m7 ]4 M1 ^
        References( X+ I" a" u( c
    [1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
    4 N+ x9 b+ H( E; M; }0 c3 R[2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
    ; V+ T4 p# ^  u4 k8 I[3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.
    . S# U7 C' Y3 M$ K- M* m$ ^! r
    8 t6 ]! E" x9 N
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    阅读本帖需具备阅读LATEX文件的知识,作者有一word文件上传,有兴趣的读者可下载阅读。
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem
                        Su Xiaoguang
    摘要:哥德巴赫问题是解析数论的一个重要问题。作者研究
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    § 1  引言
    : p3 A0 U) |4 r5 T+ D      1742年,德国数学家Christian Goldbach提出了关于正整数和素数之间关系的两个推测,用分析的语言表述为:
    (A)对于偶数N
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
    (B)  对于奇数N
    N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
            这就是著名的哥德巴赫猜想,如果命题(A)真,那么命题(B)真,所以,只要我们证明命题(A),立即推出猜想(B)是正确的
             
    §2相关集的构造
    8 T$ F! O) k  }$ _* s' F, s
    A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    \cdots
    A=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
      §3    预备定理1 I" ~2 |3 C) G, M! c0 A/ r7 K
    定理 1
    M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
      .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
    \cdots
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
         定理2 (素数定理)
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
          定理3  对于偶数x
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
    证明 根据定理1, (1)  
      \because A_{i},A_{j} Countable,
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2) 9 u% z3 }* h! b+ r
    类似地,根据定理1,
    (2), C可数  1 h- I; G- Y9 C- Q, S) t
    设      M_{1}(x)=minM(x)
    根据(2),那么我们有.
    7 m2 q& O3 ~; s, U2 L, a# [ M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
    定理4  对于偶数x
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        3
    证明: 根据(2),那么我们有
    5 r2 F0 X- H8 L$ t  M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
         设   M_{2}(x)=maxM(x)
    \therefore M_{2}(x)
    =\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    =4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    §4 Goldbach's problem 终结/ I4 F# ]9 u- e& {6 z; H  w0 b
    定理 5  对于偶数N
    N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
        证明: 根据定理2
    . r1 u$ ]$ P* Y( v, t4 V N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
    让  c_{1}=min(\alpha ,\beta ),
    根据定理3,然后我们有+ D% @; O- f6 o# V- F
          D_{1}(N)=M_{1}(N)-M_{1}(N-2)
    显然
    ) \, @1 ]" ?. d$ F. ^       D(N)\geq D_{1}(N)
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    \because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    定理6  对于偶数N
    N> 800000\Rightarrow D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    证明: 根据(4)
    让  c_{2}=max(\alpha ,\beta )
    根据定理4,然后我们有5 }9 p8 s2 f* V: c4 O- x
           D_{2}(N)=M_{2}(N)-M_{2}(N-2)
    \because D(N)\leq D_{2}(N)
    根据(5),那么我们有
    6 \: F/ B8 A; Z5 `* [       D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    定理7 (Goldbach Theorem)  
    对于偶数N
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    证明: 根Shen Mok Kong 的验证- F. ^. X8 u  Q7 o
          6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1
    根据定理5, 定理 6, 然后我们有
    * e/ K9 V3 ?0 `8 i, \% \- _7 `
          N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    \therefore N\geq 6\Rightarrow D(N)\geq 1
    引理1 对于奇数N
    N\geq 9\Rightarrow
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    证明: 让 n\geq 4
    \because 2n+1=2(n-1)+3
    根据定理7,然后我们有' p( U. m1 }6 K7 U! g# G; F
          N\geq 9\Rightarrow T(N)\geq 1
        References
    [1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    我国数学家华罗庚,闵嗣鹤均对M(x)的下界做过研究,潘承洞,潘承彪对D(N)的上界做过研究,他们留下了遗憾,也留下了经验.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 0 I1 X) r: ?1 T
    1.83150(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 4.36166\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}/ G0 |/ g# @  u* q/ s8 v& [
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    若N>800000,
    ! T4 y/ I5 P& h/ A' y则   1.83150(1-1/logN)[N/log^2(N-2)]≤D(N) ≤4.36166[1+2/logN +o(1)]×
    & w0 w3 L+ [# r* m' dN/{log[(N-2)/2]log(N-2)}, X+ o# H& z  f
    这就是哥德巴赫公式,有兴趣的读者不妨检测一下。
    回复

    使用道具 举报

    11

    主题

    12

    听众

    1720

    积分

    升级  72%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    回复

    使用道具 举报

    11

    主题

    12

    听众

    1720

    积分

    升级  72%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    本帖最后由 1300611016 于 2014-1-4 09:08 编辑 - e) e, |; `  S9 u7 x
    5 ~7 D9 Q9 g# |0 \+ d
    太烦,可以用一个简明的形式,如·同偶质数对·形式展开详细见http://www.madio.net/thread-202136-1-1.html4 @& J; {" h/ t/ \0 I) S
    一般的用简明浅显的形式表述更容易推广,如能用初等数学表述这一问题,可以尝试一下。但不妨碍专业研究。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-7 21:34 , Processed in 0.802866 second(s), 100 queries .

    回顶部