QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2833|回复: 10
打印 上一主题 下一主题

Goldbach’s problem

[复制链接]
字体大小: 正常 放大
数学1+1        

23

主题

14

听众

2535

积分

升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    跳转到指定楼层
    1#
    发表于 2013-12-6 12:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Goldbach’s problem                    Su XiaoguangAbstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:[code]<SPAN style="FONT-FAMILY: Arial; COLOR: #333333; FONT-SIZE: 12pt; mso-font-kerning: 0pt; mso-ansi-language: EN" lang=EN></SPAN>[/code]A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1DeducedD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    1 E4 D4 z' K9 { Key words: Germany,Goldbach,even number, Odd number ,prime number, MR (2000) theme classification: 11 P32 Email:suxiaoguong@foxmail. com. E+ j% E: m& o. @  M! u, k
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    数学1+1        

    23

    主题

    14

    听众

    2535

    积分

    升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem (pdf)
                           Su Xiaoguang1 z: l) P  m; d% w5 L
         
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    & M& x$ W* r- {# L
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2535

    积分

    升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem
    8 i+ }- ^, @: S) j5 f! d4 c8 ~                    Su Xiaoguang3 q- w" ^5 d) G' @# y& N( v
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    ( m: g' M; u1 u& @( M
    + Q3 T: x6 ?; z* qA= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    + F" n5 U+ l2 p: G; Z! ?4 VC=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    9 w5 m& Z! H' {& TDeduced
    # N) X# z  A$ kD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    6 W. I# i$ F# R5 i1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
      b# l: S; j& \
    6 E3 a8 D2 c6 Q/ \6 IKey words: Germany,Goldbach,even number, Odd number ,prime number,
    8 t( x& Z/ C( m: m) I" n  oMR (2000) theme classification: 11 P32
    . W$ o' v/ F4 X$ f- T4 tEmail:suxiaoguong@foxmail. com
    # I+ S% S% w8 V/ [& t# S) O- b7 `2 \* i§ 1 Introduction
    ! ]( E2 I& Z0 b" }3 H) f  _1 \          In 1742, the German mathematician Christian Goldbach (1690-1764), Put forward two speculated about the relationship between positive integers and prime number,using analytical language expressed as:
    : @: K; V# o& O2 I1 E) |- T(A)For even number N
    # h8 A. F, w4 w& Q6 }; r
    4 A" ]9 P& R/ Q' d$ mN\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>06 u9 |# }6 T* Y% w# r4 P$ o

      b9 D* d* ~7 x( [(B)  For odd number N
    1 K3 x) k: b! i9 p- n8 ~7 w0 I! i/ H
    N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>00 e/ v/ ?% i3 I0 Z7 o
    " T( {4 K7 `$ W- i2 S
    This is the famous GOldbach conjecture。If the proposition (A) true, then the proposition (B) True。So, as long as we prove Proposition (A), Launched immediately conjecture (B) is correct
    . d- m8 F) v' e* {/ B, Z          1 n& X6 S* M( ?* b7 h( u3 z  k) a2 z' s
    §2 Correlation set constructor
    ( e( b3 t, t% y3 a$ \A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    ! [& b: O  I# H5 c  W A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}) i6 Z; {/ r. Q$ l; `/ b* T4 A
    A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    - o6 l4 |% m) ]9 V( L3 s \cdots
    ! P6 |) F" T  y8 L5 s; WA=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)# g) T# C2 `5 e; Z6 F
    p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      7 j  H6 T- \( O4 R! C8 L
      §3    Ready  Theorem$ T! t: P4 c9 h8 a) R
    Theorem 14 Y" [. E) [$ h6 j. L  Z  O
    M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
    $ F$ Z. Z6 D. K9 O6 f+ m  .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
    7 @; |* }* Z' N* u( p7 y" ?/ v! ^" I' N) m\because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots- V8 _; M! Y/ T0 d
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    0 H$ S5 ^+ X) g! D: L- T. rM_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots, u: O* T' n  m6 U0 m# U1 W- ~/ R
    \cdots
    1 \9 ^$ ~: r8 ~9 F\therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
    / W2 |( {7 ?8 h     Theorem 2 (Prime number theorem)0 g7 Z; H+ k2 @; l
    , f/ g& A) x) m# i4 \+ ?; }
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
    ' @8 }# u! z; F     Theorem 3  For even number x
    # B- b8 H9 w6 c' Rx>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
    & [" x+ ^: o! B! i/ `; GProof: According to Theorem 1, (1)  7 d# f8 |, e7 l) P
      \because A_{i},A_{j} Countable,0 u4 t, `" O& V) |! e
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
    , Y, z( P' `2 k" m0 k# qSimilarly, according to Theorem 1, (2), C countable
    0 q  d  T/ _5 A0 u" }2 i Suppose
    2 \' O2 s7 L6 D% V      M_{1}(x)=minM(x)* ]6 |1 M$ p4 y3 f% Z
    according to (2), Then we have
    ! i+ i" |- G) ~. M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
    & g& @+ }( a; J. C; N Theorem 4  For even number x# K5 d% C8 g' D/ H5 m, F
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        (3)( }3 T) A% H9 u7 {
    Proof: According to (2),Then we have
    2 E8 c6 E2 B' h" W8 g) a# SM(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
    ' o# K4 s# K; s. i     Suppose7 d3 y, @1 `7 P: ]
          M_{2}(x)=maxM(x)
    ' b% V' `6 t6 a" i$ x+ u\therefore M_{2}(x)
    ; ~) C, i. D5 O% a# g2 \8 v% y=\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    9 S- A. _+ z& c' g, p) H1 W=4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    & h$ l; F$ t1 N4 _; z! g7 _: L§4 Goldbach's problem end
    8 J: h$ \; a2 {; U6 MTheorem 5  For evem number N& v+ p, N  [# R! {. J" C
    N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    , |$ |4 ^$ c* t     Proof: According to Theorem 2
    ! W) I& m3 D/ r; t9 J& w$ oN> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
    ' |' @! G9 @7 p& yLet   c_{1}=min(\alpha ,\beta ),
    * k! j- @( F9 z- WAccording to Theorem 3,Then we have
    . R( k) O. ]+ ~( A7 YD_{1}(N)=M_{1}(N)-M_{1}(N-2)
    + G6 J$ l9 A1 P( ?3 j8 T5 cClear
    7 o- k" ^) S/ j+ mD(N)\geq D_{1}(N)3 V1 C2 [0 }" y; Y% I
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    + i# V' z0 h% z. L2 Z6 F$ K\because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
    " M1 p9 q4 \( D, P, {\therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)) M# n( ]- ~7 u! C
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow . n. B0 t; c! L9 Z( s
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}* V$ ~, ^/ [3 e# D# W7 D0 E8 V. _
    Theorem 6  For evem number N+ Y/ G- u+ p6 j  w
    N> 800000\Rightarrow D(N)\leq ; ^3 l0 k3 Y2 t
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}% k' c4 Q$ d$ x% j8 y# P
    Proof : According to (4)
    0 v/ \& L* a+ u) [2 q1 vLet  c_{2}=max(\alpha ,\beta ), ?5 d% w( B) L, M% H" V8 }5 I% P( n* v
    According to Theorem 4,Then we have
    + f' p' i4 d5 H# c( y6 TD_{2}(N)=M_{2}(N)-M_{2}(N-2)
    , C. b6 i5 }' v) u  k. F\because D(N)\leq D_{2}(N)8 y$ x- V) s+ O! O1 D8 C, [
    According to (5), Then we have8 }! C/ X4 X+ B& g
    D(N)\leq 2 s# y4 t4 p! [- X* F& f6 [
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}, j5 q# S- t& ]& u* i& k
    Theorem 7 (Goldbach Theorem)  ' K7 N. a" `9 f4 D+ Q9 f
    For evem number N
    + F) m7 q0 V. C6 z  QN\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1# H  F" ^! X* m+ X# [, Z
    Proof : According to Shen Mok Kong verification
    0 h5 ]$ K0 T; p3 g5 u  y/ {6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1
    + ~9 i9 O! x9 m' \' ^9 L- n: t/ HAccording to Theorem 5, Theorem 6, Then we have$ c! V3 [! F7 {9 S3 w& C- z% D
    N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    " L' t- b* {& N3 y9 B' m\therefore N\geq 6\Rightarrow D(N)\geq 1
    : e2 i1 ^0 ]4 U, Z) s" vLemma 1 For odd number N
    ; A6 B2 |* M/ p2 }1 c% h/ `7 N- ]N\geq 9\Rightarrow / t. s& z7 ?4 G6 p+ Z" e
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    8 e$ J% h5 [4 T6 f6 m& L$ BProof et  n\geq 4
    & e: o5 [( n* o\because 2n+1=2(n-1)+3  z" Y7 z& z7 n9 L  s# q* ]) H3 M
    According to Theorem 7,  Then we have
    & Y" n) H( F% A/ \N\geq 9\Rightarrow T(N)\geq 1
    ; @5 I9 [$ D7 Q: U# S2 Y
    & x" T5 l) h. {% `0 G; k( V  P  r6 _* v) z4 b
        References3 W# G+ B8 I3 D2 o4 K5 s6 ?4 g
    [1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.# E: f# `1 A2 U4 N
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.# e$ w! U) ^& c5 ]( e% t
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.
    6 [, ?3 V+ d) S! u
    4 z1 |) @( m' R1 W7 e. H
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2535

    积分

    升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    阅读本帖需具备阅读LATEX文件的知识,作者有一word文件上传,有兴趣的读者可下载阅读。
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2535

    积分

    升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem
                        Su Xiaoguang
    摘要:哥德巴赫问题是解析数论的一个重要问题。作者研究
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    § 1  引言
    9 }, H. N1 [$ K% t      1742年,德国数学家Christian Goldbach提出了关于正整数和素数之间关系的两个推测,用分析的语言表述为:
    (A)对于偶数N
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
    (B)  对于奇数N
    N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
            这就是著名的哥德巴赫猜想,如果命题(A)真,那么命题(B)真,所以,只要我们证明命题(A),立即推出猜想(B)是正确的
             
    §2相关集的构造* b1 _- R& v, U; }3 K% k8 Z! n
    A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    \cdots
    A=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
      §3    预备定理" Y7 O+ G# p  `8 s2 Z! W) w
    定理 1
    M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
      .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
    \cdots
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
         定理2 (素数定理)
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
          定理3  对于偶数x
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
    证明 根据定理1, (1)  
      \because A_{i},A_{j} Countable,
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
    ; C" ]: }2 I* }9 V% X( r$ ~类似地,根据定理1,
    (2), C可数  0 y+ ^) G* v3 @3 o. @
    设      M_{1}(x)=minM(x)
    根据(2),那么我们有.% z/ R7 |% a9 J  E; t# ^( ^! M. @! P
    M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
    定理4  对于偶数x
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        3
    证明: 根据(2),那么我们有- ]$ d2 q, @2 M( B1 E
      M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
         设   M_{2}(x)=maxM(x)
    \therefore M_{2}(x)
    =\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    =4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    §4 Goldbach's problem 终结  o, Q/ R; u$ l) D, N, \
    定理 5  对于偶数N
    N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
        证明: 根据定理2
    ( V# Q6 v. y1 `/ S% E( d N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
    让  c_{1}=min(\alpha ,\beta ),
    根据定理3,然后我们有6 M' K8 u3 V9 {
          D_{1}(N)=M_{1}(N)-M_{1}(N-2)
    显然
      \& [; V  r$ X5 d# N, ]8 ^6 o4 f       D(N)\geq D_{1}(N)
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    \because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    定理6  对于偶数N
    N> 800000\Rightarrow D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    证明: 根据(4)
    让  c_{2}=max(\alpha ,\beta )
    根据定理4,然后我们有' I% B$ e1 h: g" R( Y; I* M: m
           D_{2}(N)=M_{2}(N)-M_{2}(N-2)
    \because D(N)\leq D_{2}(N)
    根据(5),那么我们有
    1 |: e2 g) p. `1 B% l       D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    定理7 (Goldbach Theorem)  
    对于偶数N
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    证明: 根Shen Mok Kong 的验证
    7 H. A+ d( V/ `  Y- X
          6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1
    根据定理5, 定理 6, 然后我们有
    7 V! W5 r( X! i( y- z
          N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    \therefore N\geq 6\Rightarrow D(N)\geq 1
    引理1 对于奇数N
    N\geq 9\Rightarrow
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    证明: 让 n\geq 4
    \because 2n+1=2(n-1)+3
    根据定理7,然后我们有+ @4 J' n. V, o# B- l: q9 B% i
          N\geq 9\Rightarrow T(N)\geq 1
        References
    [1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2535

    积分

    升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    我国数学家华罗庚,闵嗣鹤均对M(x)的下界做过研究,潘承洞,潘承彪对D(N)的上界做过研究,他们留下了遗憾,也留下了经验.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2535

    积分

    升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge ) N- \+ r9 S7 q
    1.83150(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 4.36166\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    $ |1 @* w# N$ t# K
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2535

    积分

    升级  17.83%

  • TA的每日心情
    开心
    2025-4-20 11:19
  • 签到天数: 842 天

    [LV.10]以坛为家III

    新人进步奖

    若N>800000,' |/ h, W: n# l2 T
    则   1.83150(1-1/logN)[N/log^2(N-2)]≤D(N) ≤4.36166[1+2/logN +o(1)]×
      T8 }) ~* ^7 @2 }& \N/{log[(N-2)/2]log(N-2)}
    ! F. n/ S8 e  r1 i1 j) `; s这就是哥德巴赫公式,有兴趣的读者不妨检测一下。
    回复

    使用道具 举报

    11

    主题

    12

    听众

    1704

    积分

    升级  70.4%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    回复

    使用道具 举报

    11

    主题

    12

    听众

    1704

    积分

    升级  70.4%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    本帖最后由 1300611016 于 2014-1-4 09:08 编辑
    / W: o" m& k( v0 h) A
    6 o8 Z. B* F  H6 [9 a- l太烦,可以用一个简明的形式,如·同偶质数对·形式展开详细见http://www.madio.net/thread-202136-1-1.html
    $ F/ T9 R% i* W  w' e* d% Y2 a; l一般的用简明浅显的形式表述更容易推广,如能用初等数学表述这一问题,可以尝试一下。但不妨碍专业研究。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-25 10:08 , Processed in 0.887655 second(s), 101 queries .

    回顶部