QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3127|回复: 10
打印 上一主题 下一主题

Goldbach’s problem

[复制链接]
字体大小: 正常 放大
数学1+1        

23

主题

14

听众

2538

积分

升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    跳转到指定楼层
    1#
    发表于 2013-12-6 12:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Goldbach’s problem                    Su XiaoguangAbstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:[code]<SPAN style="FONT-FAMILY: Arial; COLOR: #333333; FONT-SIZE: 12pt; mso-font-kerning: 0pt; mso-ansi-language: EN" lang=EN></SPAN>[/code]A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1DeducedD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    1 M' X* {$ @& m0 q Key words: Germany,Goldbach,even number, Odd number ,prime number, MR (2000) theme classification: 11 P32 Email:suxiaoguong@foxmail. com
    : R" F( g1 c: c& |0 q. Q+ r, t
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem (pdf)
                           Su Xiaoguang: H/ _# n0 y0 i
         
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}

    9 Y8 Q( U: z- Z8 P8 ]
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem" o/ N! m# R4 ^, `5 N
                        Su Xiaoguang4 D0 b- d; W6 \% v0 I
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:+ a: C; Q' Q# i: E) J

    9 A& d4 t# `) vA= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.( Z6 l: ?  o6 P2 N
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    1 [% c1 j9 p, c# f* z- H" JDeduced# D9 T/ g5 x' @" A7 e
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    % y/ F9 i$ ]: e8 v7 }5 i1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    ! _; y- P3 Q1 O* l3 k4 u% h; @( Z# f1 u4 x) d. \, \- O* a6 f
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    ! K9 Q1 O1 p4 ?6 [  [6 D9 `" BMR (2000) theme classification: 11 P32 1 T5 Z# n$ l( K3 [" T% d% f2 ]: L
    Email:suxiaoguong@foxmail. com
    ; a3 g* Z- z7 m§ 1 Introduction/ E3 e4 c! S4 W" x4 M1 P2 J
              In 1742, the German mathematician Christian Goldbach (1690-1764), Put forward two speculated about the relationship between positive integers and prime number,using analytical language expressed as:  N  c/ t5 J; y7 [- R* ^
    (A)For even number N
    ( @/ q2 C- Q" T8 `8 E( g
    & D4 q, y7 c4 X2 R5 O* ?) n* yN\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0, i" K! H# D- f4 k( _: w& R

    % u& u4 ]# {/ t# v" u(B)  For odd number N, y: }, S2 g- y, o' `0 B3 k9 N

    9 L) \, M! \  p' S# L0 m6 D2 ZN\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
    ; d& N" ^& C( p2 ?: @8 M/ S" b* P# j; p, h/ R; w
    This is the famous GOldbach conjecture。If the proposition (A) true, then the proposition (B) True。So, as long as we prove Proposition (A), Launched immediately conjecture (B) is correct- t5 _* }' d# v$ @# q- d6 ?6 G$ q3 G
             
    % m# h! r- L) m) N§2 Correlation set constructor
    " J2 m2 I0 u2 o- ?A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    ; P! g( ^. I" N7 X9 p A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}9 K' S/ y- j* I, ~( I% n8 W
    A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    ! @$ Z: q, N1 |1 R$ k4 a \cdots
    $ P- Z/ `' ?, U# ?  DA=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    ) A, g& U1 F4 u4 Np_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
    " B# }# f( t) K. Y: |, J  §3    Ready  Theorem0 t* U4 {' P1 r& l4 B* S
    Theorem 1
    # O6 J6 i) P; s  KM_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set5 @1 N4 Y! B, V- k
      .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}) I6 I& P/ ?: C& ^3 m- [" k
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots  ^) Y1 o  G2 i* R8 S; Z
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
      z* @+ c' x2 w& t' A" J4 ]# hM_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots; p3 {- F) ~4 e" h6 r
    \cdots
    4 Z& }3 p) p7 X  K: e\therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable& q/ Z/ @  s' X/ W3 U; c
         Theorem 2 (Prime number theorem), o/ A: p" x# n4 W$ t6 i3 u

    1 ]7 \  o. o0 B/ y' b# \. q\pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
    & p7 V5 \; Y4 o  y3 Z     Theorem 3  For even number x; Y! J! U9 M- M
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
    5 |* |/ }/ N4 j, KProof: According to Theorem 1, (1)  # E+ Y% a# g& U3 z) B: U# h# J
      \because A_{i},A_{j} Countable,
    - Y/ [. _/ q% r2 E" U, K0 }/ C# b \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2) , y  i0 ?- A6 r# V% o# P
    Similarly, according to Theorem 1, (2), C countable5 F0 d; v8 n# {
    Suppose
    9 P( J" b4 B, l. O+ y& B" M) A      M_{1}(x)=minM(x)- w& e- j7 Y' p$ l# @8 a' E& s
    according to (2), Then we have6 R" }2 z' ?/ ~
    . M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]6 r( t/ B/ X8 x, Q7 V! ^
    Theorem 4  For even number x
    : F9 T! j1 T3 S' \* Nx>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        (3)
    ' `6 X( H/ H5 uProof: According to (2),Then we have( M$ ~7 V% U( S8 U" |, |7 e3 [- w
    M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
    6 o. j' n/ h) ?; A     Suppose
    2 l/ v; y6 B8 m4 Y! i. |7 \      M_{2}(x)=maxM(x)1 [4 _5 _" p! A! L
    \therefore M_{2}(x)) M# g2 u3 b; q4 W
    =\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    : O- _* S: o4 T8 T=4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)& Y) j- l3 a9 @1 g
    §4 Goldbach's problem end, ^, [# ?/ M* _$ z
    Theorem 5  For evem number N
      z  X8 L' U# H4 p& ?* V' x( rN> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}7 t6 [+ c/ q$ a
         Proof: According to Theorem 2$ u  R. _+ p- Z: n* C( @
    N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)# a1 Y; g; H8 O0 K2 l
    Let   c_{1}=min(\alpha ,\beta ),
    ; B/ U. S0 `! G* m: T0 R( }( b4 rAccording to Theorem 3,Then we have
    % l6 z6 E9 n# L, J: y- ^D_{1}(N)=M_{1}(N)-M_{1}(N-2)2 S% H7 K. l( X7 s7 l- ~7 q8 \; v0 p
    Clear2 [) m8 |' N+ L& w, z- ^9 s& V
    D(N)\geq D_{1}(N)+ S6 s, m  v6 O1 O
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt6 J: P) d& a, B- {. V
    \because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)1 q  s7 l& m- ^9 K) ~& J
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)! v/ a5 B, r6 L: h' W1 X* j9 ~
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow # A/ a7 J! D1 ]7 n
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}0 D. X/ F/ M1 j* m
    Theorem 6  For evem number N/ d9 G  J. Z+ u8 D6 A5 K
    N> 800000\Rightarrow D(N)\leq   U2 i6 }* F( J9 P3 Z; w6 b
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    % [# ^: t, W" Y/ w0 l) ?) }5 X$ {3 X, mProof : According to (4)
    * o4 g! l$ ^: b8 ?Let  c_{2}=max(\alpha ,\beta )
    % `" q* g; h  g) n9 y4 [6 f2 qAccording to Theorem 4,Then we have8 @4 I  z1 k) t; I* [5 v. j: }# V
    D_{2}(N)=M_{2}(N)-M_{2}(N-2)
    ! ~/ M. R: F# t\because D(N)\leq D_{2}(N)( |5 N2 J4 [. V/ H) O* N: D7 j7 x
    According to (5), Then we have
    + o0 K- R* p' J& D9 N+ j$ T' MD(N)\leq
    1 o+ J% a& G. r# i  ]5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    2 o& e3 x3 f5 L6 nTheorem 7 (Goldbach Theorem)    A% C5 L. ~# A/ I( g! A+ L+ M# N" c. i
    For evem number N3 k9 F6 R0 R, k. R, [
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    7 K% n1 w7 h% x; t' I4 S: [0 zProof : According to Shen Mok Kong verification
      ~9 }6 X: [; w% b( B7 r6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1' j" K0 E# N" Y  V% a- J
    According to Theorem 5, Theorem 6, Then we have
    ) j+ E  V% _/ E7 ~# h7 _2 hN> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    ) ?1 }" q% c$ j* G\therefore N\geq 6\Rightarrow D(N)\geq 1
    % K- q) T0 `  L. V9 b) o9 v) }" [Lemma 1 For odd number N: [/ i4 e* A" M( \
    N\geq 9\Rightarrow 8 ^' \. a, N  }6 l, C
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1) l3 ]/ d* b) R- t$ r7 O
    Proof et  n\geq 40 V  x. C7 e. M: B' j2 H. W
    \because 2n+1=2(n-1)+3
    & f& T" G6 Y- J  aAccording to Theorem 7,  Then we have2 M$ M4 N3 P# B8 E/ V# x
    N\geq 9\Rightarrow T(N)\geq 1
    ; n7 w! W6 E! @+ C$ r- M# i' |
    . L2 O% c4 C7 g, ~8 V% F
    ; m8 q% n4 ~; N4 v9 ]    References
    3 ?8 O' K/ ~1 {[1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.4 ~. V0 f; t; P- ^
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195., p  M* \1 }1 O) H* p% K
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.: D+ W! k+ W8 T, b, p5 b& |
    % u7 O* ^( F+ w& A
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    阅读本帖需具备阅读LATEX文件的知识,作者有一word文件上传,有兴趣的读者可下载阅读。
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem
                        Su Xiaoguang
    摘要:哥德巴赫问题是解析数论的一个重要问题。作者研究
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    § 1  引言
    ; Q; f) X* `0 s% Q9 L, m6 `3 A      1742年,德国数学家Christian Goldbach提出了关于正整数和素数之间关系的两个推测,用分析的语言表述为:
    (A)对于偶数N
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
    (B)  对于奇数N
    N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
            这就是著名的哥德巴赫猜想,如果命题(A)真,那么命题(B)真,所以,只要我们证明命题(A),立即推出猜想(B)是正确的
             
    §2相关集的构造
    * @# f& _5 @6 r9 i( i8 R2 T* q
    A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    \cdots
    A=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
      §3    预备定理- T% B6 @8 u" ^
    定理 1
    M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
      .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
    \cdots
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
         定理2 (素数定理)
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
          定理3  对于偶数x
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
    证明 根据定理1, (1)  
      \because A_{i},A_{j} Countable,
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
    ; `" \# f+ l- i1 }- t' }1 n2 j! Z: h- _类似地,根据定理1,
    (2), C可数  . H! |! H! J# [+ p" }0 b. b
    设      M_{1}(x)=minM(x)
    根据(2),那么我们有.% E( ^8 d" k) q4 t
    M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
    定理4  对于偶数x
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        3
    证明: 根据(2),那么我们有
    ; m" Z) q. M  ]  D6 |& S  M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
         设   M_{2}(x)=maxM(x)
    \therefore M_{2}(x)
    =\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    =4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    §4 Goldbach's problem 终结
    7 [0 d0 D- Y0 a5 u/ F& t" p# p定理 5  对于偶数N
    N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
        证明: 根据定理24 ?. b& Y' x# |; b
    N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
    让  c_{1}=min(\alpha ,\beta ),
    根据定理3,然后我们有- ?7 ?( k+ \( g- t
          D_{1}(N)=M_{1}(N)-M_{1}(N-2)
    显然' f7 Y* i$ T* W* C! g2 D
           D(N)\geq D_{1}(N)
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    \because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    定理6  对于偶数N
    N> 800000\Rightarrow D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    证明: 根据(4)
    让  c_{2}=max(\alpha ,\beta )
    根据定理4,然后我们有( b; `1 u3 u; k
           D_{2}(N)=M_{2}(N)-M_{2}(N-2)
    \because D(N)\leq D_{2}(N)
    根据(5),那么我们有; I4 L+ E- H$ f+ K
           D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    定理7 (Goldbach Theorem)  
    对于偶数N
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    证明: 根Shen Mok Kong 的验证
    9 h; h) [% _+ T+ Y% W7 N# R+ b
          6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1
    根据定理5, 定理 6, 然后我们有
    ) i0 f0 k" |. Y" `9 A5 @# P' H
          N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    \therefore N\geq 6\Rightarrow D(N)\geq 1
    引理1 对于奇数N
    N\geq 9\Rightarrow
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    证明: 让 n\geq 4
    \because 2n+1=2(n-1)+3
    根据定理7,然后我们有8 E! W. c) e& u, P8 V; r) Y9 w, X* @
          N\geq 9\Rightarrow T(N)\geq 1
        References
    [1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    我国数学家华罗庚,闵嗣鹤均对M(x)的下界做过研究,潘承洞,潘承彪对D(N)的上界做过研究,他们留下了遗憾,也留下了经验.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge - Y. K+ U  T& c- b6 f
    1.83150(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 4.36166\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}/ ]1 c* C( `  O1 n6 o5 R5 s
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    若N>800000,
    ; t% f  [- B5 G  @  d: P则   1.83150(1-1/logN)[N/log^2(N-2)]≤D(N) ≤4.36166[1+2/logN +o(1)]×6 p; o3 F! ~8 H7 e
    N/{log[(N-2)/2]log(N-2)}3 |6 R$ Y: c$ a" Q/ g
    这就是哥德巴赫公式,有兴趣的读者不妨检测一下。
    回复

    使用道具 举报

    11

    主题

    12

    听众

    1720

    积分

    升级  72%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    回复

    使用道具 举报

    11

    主题

    12

    听众

    1720

    积分

    升级  72%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    本帖最后由 1300611016 于 2014-1-4 09:08 编辑 4 b2 X( \; x1 _9 g5 H4 Z& ]
    : S/ f  y3 n! `0 f5 _2 ^$ ~
    太烦,可以用一个简明的形式,如·同偶质数对·形式展开详细见http://www.madio.net/thread-202136-1-1.html4 W6 o* `+ R7 C) N: F# f5 @
    一般的用简明浅显的形式表述更容易推广,如能用初等数学表述这一问题,可以尝试一下。但不妨碍专业研究。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-6 17:05 , Processed in 0.670796 second(s), 100 queries .

    回顶部