- 在线时间
- 59 小时
- 最后登录
- 2015-2-6
- 注册时间
- 2013-2-24
- 听众数
- 8
- 收听数
- 28
- 能力
- 0 分
- 体力
- 1549 点
- 威望
- 0 点
- 阅读权限
- 200
- 积分
- 572
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 211
- 主题
- 19
- 精华
- 0
- 分享
- 0
- 好友
- 23
TA的每日心情 | 奋斗 2014-11-17 17:39 |
---|
签到天数: 146 天 [LV.7]常住居民III
 群组: 数学建模培训课堂1 群组: 华南理工大学 群组: 第三届数模基础实训 群组: 数模思想方法大全 群组: 第一期sas基础实训课堂 |
纽结理论是数学学科代数拓扑的一个分支,按照数学上的术语来说,是研究如何把若干个圆环嵌入到三维实欧氏空间中去的数学分支。纽结理论的特别之处是它研究的对象必须是三维空间中的曲线。在两维空间中,由于没有足够的维数,我们不可能把让一根曲线自己和自己缠绕在一起打成结;而在四维或以上的空间中,由于维数太多,无论怎么样的纽结都能够很方便地被解开成没有结的曲线。
8 X0 Y5 c0 [+ J 数学上的定义:纽结是三维空间中的不与自己相交的封闭曲线,或者说,三维空间中的与圆周同胚的图形。两个纽结等价是指存在三维空间本身的一个变形,把一个变成另一个。与平面上的圆周等价的纽结称为平凡纽结(因为把未打结的绳子两头捻合得到的圈可以放在平面上)。同时这也是绳结魔术的数学道理。
' l% k% L& F5 Q2 Q- | 如果不是考虑一条闭曲线,而是同时考虑h条闭曲线,要求它们既不自交也不互交,那么就得到h圈链环的概念。等价性的定义也与纽结的相仿。图3中是两个非平凡的(即不等价于互相分离的圆周的)双圈链环,它们彼此也不等价。% Q2 i" q7 I7 X5 M% Y
纽结理论的基本问题是:怎样区分不等价的纽结(或链环)?它是三维拓扑学的一部分,/ f' D7 z9 P5 g, Q, E! ?
因为曲线打结与链锁是三维空间所特有的现象(平面上、四维以上的空间里曲线都不会打结),而且它所研究的是闭曲线在三维空间中安放方式的差异,并不是闭曲线本身(它们都与圆周同胚,因而彼此都同胚)。
9 v, s; ~, _. W4 T& [ ~( vC.F.高斯在1833年研究电动力学时引进了闭曲线之间的环绕数,这是纽结理论的基本工具之一。1880年左右出现了最早的纽结表。纽结理论后来随着代数拓扑学的发展而前进,也反过来刺激了代数拓扑学的发展。1910年M.W.德恩引进纽结的群的概念,1928年J.W.亚历山大引进了纽结的多项式这个更易处理的不变量,都是重要的进步。纽结理论是拓扑学的一个引人入胜的领域,一方面因为它研究的是看得见摸得着的丰富多彩的几何现象,有着许多问题等待人们去解决,另一方面也因为它相当奥妙,需要动用各种各样的方法,成了诸如群论、矩阵论、数论、代数几何、微分几何等众多学科与拓扑学交汇的地方。. e0 \5 @& N6 g" Z+ h
0 B8 m( M, [; v* J7 J; G, t
目前,已经有了能够判断纽结的等价性的算法,可以造出一台机器,输入任意两个纽结的投影图,它都能判定它们是否等价。然而这只解决了理论上的可判定性,还不切实可行。在实际计算方面,已发明了一些新的多项式不变量,它们比亚历山大多项式包含更多的信息。
: G, C$ j8 e j8 P( D- O: @5 H$ D& I; X5 ~3 j# `* i
由于纽结、链环与三维、四维流形的构造和分类有深刻的联系,与奇点理论也密切相关,也由于高维纽结(n维球面在n+2维空间中安放方式)的研究的进展,纽结理论近年来引起更多人的兴趣。它也被应用于化学中大分子的空间结构的研究,例如遗传物质DNA的研究。
R; h9 K- l% B0 z) R7 T6 N
3 T8 w: T" C0 T" ?20世纪八十年代,jones发明了纽结多项式,为纽结理论的发展做出了进一步的推动。, {. M4 D% f. S0 o; T
7 Y; {4 s6 S& \- q& `% Y j, V$ t
; z' f' n z8 w7 D& Z5 E& k4 e
【转】 |
zan
|