QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2444|回复: 0
打印 上一主题 下一主题

帮忙做下统计显著性检验和K值的误差以及灵敏度分析

[复制链接]
字体大小: 正常 放大

5

主题

9

听众

88

积分

升级  87.37%

  • TA的每日心情
    无聊
    2015-10-10 18:19
  • 签到天数: 24 天

    [LV.4]偶尔看看III

    社区QQ达人

    跳转到指定楼层
    1#
    发表于 2016-10-25 16:51 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    10体力
    function parafit  `0 b! u8 A$ `" t. l, U
    %  k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
    / j( j4 I* W- ?9 r: a% k6->k6 k7->k7
    + J/ N- r0 D" g) [% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);4 s( d" D; X) v0 S: r
    % dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
    8 P+ T# h, n- F0 F& D# p2 q% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
    + U5 g- l) Z5 R8 ^& b% dLadt = k(7)*C(Hmf);
    $ z- s) }0 y* i6 D%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
    8 Q4 P5 n0 k" E' T& iclear all
    - E% @: ?& _1 ~clc
    : ~$ d, E2 C- Gformat long6 m/ r8 [- L3 ^6 C( _
    %        t/min   Glc    Fru        Fa   La   HMF/ mol/L 9 {; h. V, f2 }1 n* c. s4 x
      Kinetics=[0    0.25    0           0    0       0
    4 X& l3 t# ?0 p; o% p          15    0.2319    0.01257    0.0048    0    2.50E-04. r7 S5 b9 z! k1 d
              30    0.19345    0.027    0.00868    0    7.00E-04, k  D' r: v  z, ?+ y
              45    0.15105    0.06975    0.02473    0    0.00338 \* V7 T3 ]7 x# d& i
              60    0.13763    0.07397    0.02615    0    0.00428" z& u* D. H% d1 L
              90    0.08115    0.07877    0.07485    0    0.01405) w% m5 G0 r  h
              120    0.0656    0.07397    0.07885    0.00573    0.02143
      r4 M& B4 j( {: p( p: x- \( b2 Y          180    0.04488    0.0682    0.07135    0.0091    0.03623- B% [% G9 h& V; l6 Y+ h
              240    0.03653    0.06488    0.08945    0.01828    0.05452
    ) z" P, z4 c0 ?+ l# t          300    0.02738    0.05448    0.09098    0.0227    0.0597$ \7 z5 v% H9 ?, x( o
              360    0.01855    0.04125    0.09363    0.0239    0.06495];9 w1 a6 u, n5 j9 G0 p  b# k9 X) y
    k0 = [0.0000000005  0.0000000005  0.0000000005  0.00000000005  0.00005  0.0134  0.00564  0.00001  0.00001  0.00001];        % 参数初值
    1 B2 g0 e: T* n+ d4 T) ~lb = [0  0  0  0  0  0  0  0  0  0];                  % 参数下限
    + V! E, C5 q# |* M+ H: u5 k1 r1 {ub = [1  1  1  1  1  1  1  1  1  1];    % 参数上限. w, {6 w. u! a
    x0 = [0.25  0  0  0  0];
    # o" g$ ?- ]$ t- o7 i' E( tyexp = Kinetics;                 % yexp: 实验数据[x1        x4        x5        x6]+ p! k0 f. x+ _6 ~+ w6 Z. r- E% x
    % warning off
    ; {: s$ o- v. B% 使用函数 ()进行参数估计
    0 d9 X$ Q" L; f+ L& C2 J* |[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);+ l4 c: Z5 S# P: U
    fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
    ! ~  Z) i3 a- i; J4 ~9 Afprintf('\tk1 = %.11f\n',k(1))! w. E0 u  N, g
    fprintf('\tk2 = %.11f\n',k(2))
    9 E5 W4 X# f8 k! j( y% m; Q) y% ^: pfprintf('\tk3 = %.11f\n',k(3))# i% S) t- R9 ?" i- o
    fprintf('\tk4 = %.11f\n',k(4))2 r/ E4 o$ M: W9 F5 l4 h" C. N
    fprintf('\tk5 = %.11f\n',k(5)). E0 L  O6 \6 m, D
    fprintf('\tk6 = %.11f\n',k(6))
    , J4 i1 [7 b3 k: B1 K3 Q. c  z, S% Dfprintf('\tk7 = %.11f\n',k(7))
    ( Q$ [+ Q" D$ M: b# F4 lfprintf('\tk8 = %.11f\n',k(8))
    / q3 @2 }4 A/ ufprintf('\tk9 = %.11f\n',k(9)); \0 }9 y7 ^, P2 f/ p
    fprintf('\tk10 = %.11f\n',k(10))
    6 _( q* {) S* @2 Q4 p' jfprintf('  The sum of the squares is: %.1e\n\n',fval); h- T# ^% M6 [6 N8 U1 Q: V; T
    k_fm= k;+ t0 y  W4 l' {/ g  j, Q7 W% P2 _' h
    % warning off
    & [8 v$ X" V* G! k/ @+ v% 使用函数lsqnonlin()进行参数估计
    4 p1 J' f9 a8 e2 J! }[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
    ! s: k8 s, ]8 D" J8 Z3 c    lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);      
    9 `: `0 T; P2 d. \, J& xci = nlparci(k,residual,jacobian);
    . r* |/ w* e. c, p0 ]: Qfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
    3 K. V2 b9 i3 _/ u' k2 j' F' kfprintf('\tk1 = %.11f\n',k(1))% U$ N( }& C3 ?! b; ~2 }$ N
    fprintf('\tk2 = %.11f\n',k(2))8 B1 H4 D/ D' f. o/ W2 A
    fprintf('\tk3 = %.11f\n',k(3))
      j. r" j# F) {! ]fprintf('\tk4 = %.11f\n',k(4))6 f, F7 w+ r- P
    fprintf('\tk5 = %.11f\n',k(5))2 y( h. W9 E# J+ o- w  U, F- B0 d
    fprintf('\tk6 = %.11f\n',k(6))* E5 P3 @3 I: b; y! P7 l
    fprintf('\tk7 = %.11f\n',k(7))
    7 v2 U+ E" Z5 Wfprintf('\tk8 = %.11f\n',k(8))6 d( \' V. J" S4 k2 ?
    fprintf('\tk9 = %.11f\n',k(9))
    # C" W5 M5 G/ T7 u* s4 V2 r2 Rfprintf('\tk10 = %.11f\n',k(10))7 E  A0 [0 }- i5 x' h7 P
    fprintf('  The sum of the squares is: %.1e\n\n',resnorm)5 v5 f7 U8 i6 w3 d2 k
    k_ls = k;
    % N4 q) `" H8 Voutput
    % X$ t! b) j* A! xwarning off" ^' ?7 p2 H# _( ^3 @' Z5 c7 J. t3 L
    % 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
    * C0 Q% F, w# Y) u6 Wk0 = k_fm;
    : s- [8 a/ h3 B& p) L[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
    ' A5 H7 D4 a( B$ `, e    lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);      ! r0 \' \! |5 A  h5 N0 z7 k
    ci = nlparci(k,residual,jacobian);( I* \6 a8 {7 [/ N# {
    fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
    3 v( o- H1 k, ?& _& Rfprintf('\tk1 = %.11f\n',k(1))4 f5 L5 t( R- T: D) v$ q
    fprintf('\tk2 = %.11f\n',k(2))
    8 ]2 o; V3 l# q+ G/ lfprintf('\tk3 = %.11f\n',k(3))
    # V8 T% o& h: K: d9 Efprintf('\tk4 = %.11f\n',k(4))) i4 q/ [) K9 A( X$ X
    fprintf('\tk5 = %.11f\n',k(5))
    ; ~7 ^( o) y: S2 c: _fprintf('\tk6 = %.11f\n',k(6)). S: Z/ M1 d0 \% e$ W
    fprintf('\tk7 = %.11f\n',k(7))
    7 w: t, C, m& G4 G+ q( q, {fprintf('\tk8 = %.11f\n',k(8))
    ; I; r6 H2 f: v8 C/ Cfprintf('\tk9 = %.11f\n',k(9)); g- c9 Y# J; g6 K
    fprintf('\tk10 = %.11f\n',k(10)): K) ~3 t1 e1 Z! ?/ |, \- r
    fprintf('  The sum of the squares is: %.1e\n\n',resnorm)
    + m+ K9 N' S+ J, @, ]# W* Ck_fmls = k;
      O" N8 `/ I! v" xoutput# D$ @3 H1 r' z& K# ]8 s) M
    tspan = [0 15 30 45 60 90 120 180 240 300 360];
    , [) D2 a3 p! ]$ r+ d# R3 z[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); * w' W  S! {) i) _( U
    figure;( b$ X. R5 `, N. `" Y! B
    plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
    . c- y4 N' N* xfigure;plot(t,x(:,2:5));4 n' ?4 A; X6 e1 D
    p=x(:,1:5)6 X1 M# C7 L+ R1 _7 ?6 z
    hold on3 H# [9 ^0 X  C! t% B: O2 B
    plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
    6 q% e& i( v7 v% @( L$ d9 K/ H
    5 q4 Z" `3 _3 Z, c' M) K; i- }( K# H: Q) S% Y3 L

    3 a' [8 I5 t0 ]) l( x' j' s. t$ kfunction f = ObjFunc7LNL(k,x0,yexp)
    7 i& U+ D/ R0 ztspan = [0 15 30 45 60 90 120 180 240 300 360];# f0 |3 z' U- Q3 {4 S0 }! U
    [t, x] = ode45(@KineticEqs,tspan,x0,[],k);     J% Y! n7 f: r7 B4 W
    y(:,2) = x(:,1);
    . j. Z9 L" R2 `9 c: c" zy(:,3:6) = x(:,2:5);4 _, V: [' z- p) i, g2 F0 p
    f1 = y(:,2) - yexp(:,2);
    & }$ T1 y5 Y$ \6 z7 [$ Df2 = y(:,3) - yexp(:,3);3 x7 c$ U8 M! |1 H) M, r# K
    f3 = y(:,4) - yexp(:,4);
    / f. b; C9 i% A; `3 S2 u( {& Hf4 = y(:,5) - yexp(:,5);
    ( T7 }8 k) B# u; R% |, a% lf5 = y(:,6) - yexp(:,6);
    ! J" I: t+ x4 o) {" q: j: N0 ~f = [f1; f2; f3; f4; f5];% b" P: i( v8 N* L3 ]# Y1 e
      @. H' A/ p+ E2 r( l

    7 H9 q8 O  }6 N7 T/ {* R2 s$ {; I) ^1 q3 j* F& f& a/ K% B$ M
    function f = ObjFunc7Fmincon(k,x0,yexp)% F/ `9 [* R' p* [2 m2 P. n' ?
    tspan = [0 15 30 45 60 90 120 180 240 300 360];
    7 b" R% z. j; n: m& _+ ]7 z/ [[t x] = ode45(@KineticEqs,tspan,x0,[],k);   
    & k$ Z$ P6 G# u+ i' A% D6 ry(:,2) = x(:,1);
    3 _) c( I- T0 S: s+ J8 ]7 ty(:,3:6) = x(:,2:5);
    4 Y. X% m# {* Hf =  sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2)   ...) G+ y6 t% \/ v3 f4 |2 J
        + sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2)   ...9 V* ]* u+ Y9 Z1 ^
        + sum((y(:,6)-yexp(:,6)).^2) ;
    & L- P% l4 W9 G# x; J, X4 D* S% p+ v) Z2 O4 P0 T) E

    . J% c6 s  c9 U- z; ^1 X$ y% O$ r" V7 b
    4 D/ X5 a3 I6 }3 a, K4 k/ Y
    function dxdt = KineticEqs(t,x,k)2 L/ a; T* _3 F6 r7 }8 T
    dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
    9 ~7 A$ V. l$ h# J, \dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);' C' }' [8 b  b( J" ~8 `
    dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
    ' u" T1 @( q/ MdLadt = k(7)*x(5);6 I$ x: ^! z& q' i. y4 m7 q
    dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);5 n' j, j1 n6 Y% n. I% v
    dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
    $ y% G; W/ q- ]
    ( b$ ]6 k, [* N7 m( h! X# G' G4 A% C3 ?0 z$ C  B4 J

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-6 10:43 , Processed in 0.531138 second(s), 49 queries .

    回顶部