- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
|---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit. c* w% Z$ S; V
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
6 y6 Z5 E& N: r( h% O2 |% k6->k6 k7->k72 x- @1 X$ [) p- s' e$ U0 e
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);% M' R3 p& ^( G$ D: u3 T
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
8 g1 q) t, \/ D2 q% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
9 p8 Z0 F) q$ ^5 m* B2 }" c; ?% dLadt = k(7)*C(Hmf);! m+ f3 V7 v7 T" w, s
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);8 T% u4 b+ ^% d, h6 i* e
clear all3 `$ Z$ ]' d/ S3 M& z" ~ G
clc4 X3 i4 V* n5 W- l0 ]
format long+ ]. T- d; w. G+ b) V
% t/min Glc Fru Fa La HMF/ mol/L l8 R4 ]. C% B+ a# R
Kinetics=[0 0.25 0 0 0 0( ]* k8 H, P! R4 q" n+ y
15 0.2319 0.01257 0.0048 0 2.50E-04: ~+ F N/ u, {% w6 f- N
30 0.19345 0.027 0.00868 0 7.00E-043 R4 R: l9 B# O3 ?
45 0.15105 0.06975 0.02473 0 0.0033- A* l1 `! [' Z t- m
60 0.13763 0.07397 0.02615 0 0.00428# i8 |4 b- S% c. o$ c$ z
90 0.08115 0.07877 0.07485 0 0.01405( v2 M8 J9 m5 a; Y p
120 0.0656 0.07397 0.07885 0.00573 0.021437 _" t2 Y A& a
180 0.04488 0.0682 0.07135 0.0091 0.03623
! g2 B. m# `" _/ }9 F7 S- T/ D 240 0.03653 0.06488 0.08945 0.01828 0.05452# j# G3 y5 \9 H& ]5 s
300 0.02738 0.05448 0.09098 0.0227 0.0597
9 R3 ] T) i, q5 R; z' c 360 0.01855 0.04125 0.09363 0.0239 0.06495];& x' k* }6 D. ]1 |" V1 Z
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
- q) ]" \7 e/ T9 m$ N G; D- c5 U3 Hlb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限* f/ |6 c3 P% }/ a; Y3 A
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
0 p/ r& i! W9 ]( Qx0 = [0.25 0 0 0 0];
: \+ m! e0 o/ f1 b# Hyexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
- n* E1 {7 q1 h9 y- k, T: s# z" S8 m% warning off
( e" r! y+ X: [% 使用函数 ()进行参数估计' a; x7 u3 Z# @* g; c4 X
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);! U# ~; _# K* z) T
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
7 c1 w4 v4 @* _3 ofprintf('\tk1 = %.11f\n',k(1))0 { Q4 L9 P' }$ _
fprintf('\tk2 = %.11f\n',k(2))
1 `6 B7 S/ R" T" ~) jfprintf('\tk3 = %.11f\n',k(3))
6 A+ x P0 U6 K8 p( J- v% Qfprintf('\tk4 = %.11f\n',k(4)) _0 D' Z8 c6 ]7 x g+ x1 [
fprintf('\tk5 = %.11f\n',k(5))7 j$ J) {9 v' @. b' }' ^+ ]
fprintf('\tk6 = %.11f\n',k(6))" G$ t1 M' w V. `! t
fprintf('\tk7 = %.11f\n',k(7))
2 O+ P R7 ~5 n. `$ w6 @7 }0 tfprintf('\tk8 = %.11f\n',k(8))
2 z8 V7 i9 D% A, zfprintf('\tk9 = %.11f\n',k(9))& n' b- a0 R9 f6 F% t. q' v) x7 B# @
fprintf('\tk10 = %.11f\n',k(10))4 l. @ P* @7 Q5 k
fprintf(' The sum of the squares is: %.1e\n\n',fval)8 P, L* J* _! `2 _9 h) S
k_fm= k;$ Y s) s! T6 T+ x* X: p5 Z
% warning off& O1 o, Z8 E2 Z' x, L. G
% 使用函数lsqnonlin()进行参数估计9 N- { S5 [+ O/ s$ x2 K" a
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
( t+ E6 j) q5 d$ U lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); , d; [* [& } t
ci = nlparci(k,residual,jacobian);
$ ]* j0 r$ o6 t# C' D$ Qfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n'). C3 L& z7 C% O4 U' t
fprintf('\tk1 = %.11f\n',k(1))
" f' f8 |2 V) g9 M% g! t* rfprintf('\tk2 = %.11f\n',k(2))
9 H- K0 \$ p% n- H7 d' D8 P* M! v4 ^% wfprintf('\tk3 = %.11f\n',k(3))1 ?0 h" `; ?# `* t9 }: B7 A- j4 @* f
fprintf('\tk4 = %.11f\n',k(4))9 M. k9 f8 H. n% {* [; I* A
fprintf('\tk5 = %.11f\n',k(5))1 C9 s' `" ?5 k
fprintf('\tk6 = %.11f\n',k(6))' v% M; s% M, D/ G! _4 ?9 j( H0 ^
fprintf('\tk7 = %.11f\n',k(7))4 D, c$ M1 A4 L# l" v* x6 g
fprintf('\tk8 = %.11f\n',k(8))
0 O) y* P+ J3 }+ W- ffprintf('\tk9 = %.11f\n',k(9))1 f- p B0 W% @8 K
fprintf('\tk10 = %.11f\n',k(10))
" n( C1 q, Q! g3 x5 u$ O1 Efprintf(' The sum of the squares is: %.1e\n\n',resnorm)
7 ^. Y- |1 e2 [9 P9 vk_ls = k;5 i1 R) n$ l( ~8 e; u; P" o
output* P, M' [+ X9 V; ^) u3 ~
warning off: J1 {% c- W! e! E
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计/ [8 n+ A+ T& c7 Q
k0 = k_fm;' o; _; b3 `$ X: t" u* D6 b
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...9 n' G1 K' u. D- A7 n; y& v# H
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
a/ u4 H6 M0 V; [; E. Sci = nlparci(k,residual,jacobian); r/ g" e, ]* _# w( [
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
5 B. T$ w. b+ J5 G. l q" Sfprintf('\tk1 = %.11f\n',k(1))
4 R. ~. F- `0 @4 sfprintf('\tk2 = %.11f\n',k(2))
% S- X v d4 h2 {7 W `8 E' Sfprintf('\tk3 = %.11f\n',k(3))0 \, u) `* s: ~& \) w
fprintf('\tk4 = %.11f\n',k(4))' Q, g$ O& X* q$ M% v* ]
fprintf('\tk5 = %.11f\n',k(5))
8 {: Q7 }$ E% u+ S! i# lfprintf('\tk6 = %.11f\n',k(6))
2 j: z( m+ _8 m% \/ y* Yfprintf('\tk7 = %.11f\n',k(7))$ y) h [6 k K8 x' F8 f3 ` g
fprintf('\tk8 = %.11f\n',k(8))
5 ^ |: J# `- f: x: Qfprintf('\tk9 = %.11f\n',k(9))7 I3 N/ \, @6 u& \% g: b- V- N3 E
fprintf('\tk10 = %.11f\n',k(10))$ z- o* p5 |5 o- q" U2 |# K
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
5 }2 \/ |8 A3 q7 _8 T T( x bk_fmls = k;
+ N# y: l. i& w8 B$ E% Toutput! P" }# b/ w! t, ~4 y0 V
tspan = [0 15 30 45 60 90 120 180 240 300 360];
2 |* ^7 I- U6 @2 V: ?0 {[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
( Z' Z# Z% ]* i' u+ W+ Mfigure;2 i+ v8 m: ]: K; {' @1 i
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
; q3 U/ s4 h2 Zfigure;plot(t,x(:,2:5));
+ E6 b8 \8 b4 Q$ h0 Ap=x(:,1:5)
F7 [; _* i1 F* O$ V9 g* y) [8 Phold on
/ O+ P, p$ Z" Yplot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')' C2 Z* H) b2 D
2 M- h- q; |* H2 u2 A. P; H3 B; _8 B; @' |
9 |( J& G1 J. c8 e2 s, A
function f = ObjFunc7LNL(k,x0,yexp)
, c z; M& Y6 [9 u1 v: m: otspan = [0 15 30 45 60 90 120 180 240 300 360];9 g: c2 a5 {$ Z/ B) V
[t, x] = ode45(@KineticEqs,tspan,x0,[],k); 0 F ^- g$ [! Y5 k; r5 V5 I8 g
y(:,2) = x(:,1);! h: ?6 k! ?/ [) v( X& \1 c" X, M" @! f
y(:,3:6) = x(:,2:5);; b9 }0 M" ]- h2 f! ^
f1 = y(:,2) - yexp(:,2);+ w! c/ _0 A9 H: O/ A! k
f2 = y(:,3) - yexp(:,3);
/ N, ^! }- I& jf3 = y(:,4) - yexp(:,4);9 D' I+ D3 }# n" Z6 q
f4 = y(:,5) - yexp(:,5);& _$ z% Z9 O$ k+ m V/ p
f5 = y(:,6) - yexp(:,6);
# O& A8 A4 K" w% {( gf = [f1; f2; f3; f4; f5];" W: D% {* \' M4 _/ s/ Z
7 S) J# e, e5 ?/ r3 c
5 w2 ?( \7 {2 @( R* A7 s' G
- P8 |$ |$ T( m, xfunction f = ObjFunc7Fmincon(k,x0,yexp)
% t1 X1 [( H1 R* O7 H5 gtspan = [0 15 30 45 60 90 120 180 240 300 360];
4 e4 k1 E' R9 v7 C1 H& l2 M[t x] = ode45(@KineticEqs,tspan,x0,[],k); # v% P R1 L7 e$ h
y(:,2) = x(:,1);9 A4 Q0 v# \/ v3 q
y(:,3:6) = x(:,2:5);
6 |- p0 S( M0 `. N& n' z2 Yf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ..., m# H N" U, A; u l a+ p) P" n
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
# n) C9 d( j9 k$ J + sum((y(:,6)-yexp(:,6)).^2) ;
4 Q3 ?; k- N8 g! T/ Y! m2 M- n6 U0 P. X1 a" ?" m; {% N$ v3 m
8 ]$ _$ Z6 j, E d1 F; r; T. D
* U% K' J" a% O1 u, N W/ J2 a& g9 b* `" B
function dxdt = KineticEqs(t,x,k)6 }" m5 R8 E, t" A w' W
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);# F1 I/ J! r% F _! L; K
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);# H# _/ N' M2 u8 B' c x7 ^
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
1 U: _0 C7 r' D0 g) N2 o) odLadt = k(7)*x(5);
& ]4 L# |! T& L' NdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
& Y& t: b5 S+ E: Y8 N% R, e% Ydxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];9 h0 s4 S1 T4 r( A+ R. N+ k
8 Y$ |1 ~9 A s6 T" o0 ] J8 B8 n+ Q+ m; D
|
zan
|