- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit% p' ?- g) J" I+ \9 ~) E1 D
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
' z8 h7 G* X, t" X7 C" n4 d, F% k6->k6 k7->k7 H4 m& z3 @# }) u7 R( r/ g5 j: ?
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);4 r, G U. L, l2 v/ y: s
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru); g, I1 o/ F. r( ]' O) z
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
9 O! ~( R; B. a. r9 y% dLadt = k(7)*C(Hmf);# I" f" f5 }5 s1 E- h+ U
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);5 D1 i) ?0 y' u% q
clear all
0 }9 Q$ E1 e4 gclc
: n; M; b) u0 G, b! V0 f Xformat long
5 A' ~# U, r2 B" |6 I% t/min Glc Fru Fa La HMF/ mol/L " t% A* L7 r9 }5 u" e3 P# f) X3 u' Q
Kinetics=[0 0.25 0 0 0 0
: c$ [3 Q% j5 l1 M. |$ `6 n 15 0.2319 0.01257 0.0048 0 2.50E-04
1 N/ r: K* D# Z/ l" X- @) z' g 30 0.19345 0.027 0.00868 0 7.00E-04
3 g- M! }' y) t' l$ l# v4 Q 45 0.15105 0.06975 0.02473 0 0.0033& [9 u3 J# r8 a( v
60 0.13763 0.07397 0.02615 0 0.00428
! i3 n7 Z: ~; ]0 g6 Z! ^/ t 90 0.08115 0.07877 0.07485 0 0.014057 u/ l2 o7 }% U6 z- x: b
120 0.0656 0.07397 0.07885 0.00573 0.021433 ?3 n3 f% ?* ~9 r4 d3 h
180 0.04488 0.0682 0.07135 0.0091 0.03623+ \: j' \/ l7 C+ f9 E1 ]" F. \
240 0.03653 0.06488 0.08945 0.01828 0.05452- ~: d: D8 V" `
300 0.02738 0.05448 0.09098 0.0227 0.0597; P2 G9 ]( Y6 V% r
360 0.01855 0.04125 0.09363 0.0239 0.06495];. B- k# F: r) Q6 v
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值4 ]+ @( k) Q* f# k% f
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
* F. N3 Z2 |* p+ k; r' sub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限6 P& z* e; G, G: g6 x
x0 = [0.25 0 0 0 0];. e% c# p+ q2 Z+ t V' u7 J
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
' q; _/ G) w: r9 j% warning off
3 S7 ?2 o" w' @7 `% 使用函数 ()进行参数估计
- m/ @, S3 G0 ^; l, h v[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);1 T0 E9 \) [# I0 z* \
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
! {$ M7 d0 j, B" ufprintf('\tk1 = %.11f\n',k(1))
) g8 f/ R! d3 i) [. I1 H: ^$ hfprintf('\tk2 = %.11f\n',k(2))
`/ u, {- D) A T E& Pfprintf('\tk3 = %.11f\n',k(3))& d8 Q% m7 f5 n3 E
fprintf('\tk4 = %.11f\n',k(4))' y) z4 g5 U! i( t% u
fprintf('\tk5 = %.11f\n',k(5)) {" Z/ Y5 g7 I A% o2 F
fprintf('\tk6 = %.11f\n',k(6))5 _% l8 D( b ]0 p8 { }) D
fprintf('\tk7 = %.11f\n',k(7))
0 \( m6 z- D" ^9 j- h- q2 l* Tfprintf('\tk8 = %.11f\n',k(8))
, P% f. k' `# r- }/ s; b! D9 e. Tfprintf('\tk9 = %.11f\n',k(9))
. D$ y0 T1 x: u- l$ B( Jfprintf('\tk10 = %.11f\n',k(10))6 J; T4 M0 I) q. J
fprintf(' The sum of the squares is: %.1e\n\n',fval)! v' H# ~- I6 t! P) L/ g
k_fm= k;
! t! O3 Q1 c- @% warning off
( Z, a* M6 [9 a$ l3 p. _" ~% 使用函数lsqnonlin()进行参数估计/ l! ]: b: [( c% {- q
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
( ?9 ~8 t! W" a a8 \ lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
, r' C- {$ Z8 k$ q3 F" _) \3 G* \ci = nlparci(k,residual,jacobian);
* [4 a6 Y: w" Qfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
: r& `# |8 l a' F; t5 }5 Ufprintf('\tk1 = %.11f\n',k(1)); V# ^: o2 o! A g
fprintf('\tk2 = %.11f\n',k(2))
4 p& u' X' k qfprintf('\tk3 = %.11f\n',k(3))4 A9 \6 T+ K+ R
fprintf('\tk4 = %.11f\n',k(4))
+ _ o3 p- j1 a9 J. u: u% pfprintf('\tk5 = %.11f\n',k(5))
% a L0 d p3 t6 |* d# Yfprintf('\tk6 = %.11f\n',k(6))) Z6 z+ Q) F: o* }# z
fprintf('\tk7 = %.11f\n',k(7))
( e# p2 o% s" `( T2 z r0 x# w8 `fprintf('\tk8 = %.11f\n',k(8))
! |, I) |7 v+ ^% U6 L& f* bfprintf('\tk9 = %.11f\n',k(9))
; h E, }1 w$ |& { p# \fprintf('\tk10 = %.11f\n',k(10))" Q# }/ g! t& u1 [! t- f: d
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)6 c9 |" _8 }/ {6 c7 a
k_ls = k;
9 B Q1 f3 I2 [/ e4 ooutput& C% h2 i3 ~5 p+ [. L
warning off% y# P' S: I6 v3 n
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
; x$ |/ T! H/ w% Z2 v1 @# sk0 = k_fm;
' x5 J8 }9 R. C9 c% G9 X7 n- X[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...5 y# U2 d t g! |2 J" t
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
* o! r( K8 y1 O6 ^& }' g6 Lci = nlparci(k,residual,jacobian);; U! @0 f( l$ T% W0 s q$ t
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
! l, y8 t9 a, M6 }fprintf('\tk1 = %.11f\n',k(1))
* k9 V8 o$ \4 I( gfprintf('\tk2 = %.11f\n',k(2))$ l/ L6 a2 o" S
fprintf('\tk3 = %.11f\n',k(3))- [: T$ w0 c7 _" [4 i$ D
fprintf('\tk4 = %.11f\n',k(4))5 A# A3 Z, K% j8 s
fprintf('\tk5 = %.11f\n',k(5))! }; T" M1 |) p7 \
fprintf('\tk6 = %.11f\n',k(6))8 K: A6 u9 D6 x
fprintf('\tk7 = %.11f\n',k(7))0 M- X) ]4 z5 C
fprintf('\tk8 = %.11f\n',k(8))9 i3 S. N, ]6 z; \" g$ f
fprintf('\tk9 = %.11f\n',k(9))/ y5 n, l* B/ o' }. g& U( j0 e, x
fprintf('\tk10 = %.11f\n',k(10))
# n" H' `( y* p' |3 e9 ?& \fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
! P) P% |$ B0 o! W9 Rk_fmls = k;! ~; E8 T; d% a0 ]% U+ }
output
/ H' K6 y9 u; i1 M. t4 [tspan = [0 15 30 45 60 90 120 180 240 300 360];! M& P" y$ i! N4 d5 h8 ?' J* x
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
/ K! U5 \+ K; U" w9 J& Z; j- ~/ ^figure;3 Z) I: D* f: j& c0 M% v2 z
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')' ]2 Q$ b9 w: h1 k! y% |
figure;plot(t,x(:,2:5));; \* j( z2 I" x. }2 |8 ~
p=x(:,1:5)6 w: X7 p I6 ?; E* _
hold on
* _( L, q2 n) V6 l kplot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')( y8 T( N' b H1 e7 E0 S3 |/ }2 z2 p6 J
3 p% K7 Y2 {. D+ g; N! E8 X) E( _- t% r
3 P$ H: r: v! y. I
function f = ObjFunc7LNL(k,x0,yexp)5 x X' Y: f0 {% Q7 q7 K1 a
tspan = [0 15 30 45 60 90 120 180 240 300 360];
5 J' Z+ |5 _3 o% r1 h5 }; `/ T1 \[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
`6 |4 l) F }( g1 ?5 H, Iy(:,2) = x(:,1);" T* E, X& b9 s" n: [. j
y(:,3:6) = x(:,2:5);4 Y \7 a0 L% o3 T
f1 = y(:,2) - yexp(:,2);9 d$ o' ]9 Z3 \, l* r# K
f2 = y(:,3) - yexp(:,3);
* Y5 s1 E2 M! n/ O; Hf3 = y(:,4) - yexp(:,4);
) V* F9 O# S8 }, N7 C9 j8 x& ?f4 = y(:,5) - yexp(:,5);
( E2 r7 K7 l3 z: E/ ]4 Hf5 = y(:,6) - yexp(:,6);* ~* G! t8 U, k
f = [f1; f2; f3; f4; f5];5 f$ A, _* g9 u1 L' N
! w7 x0 {/ B( K [/ P( a5 f+ O2 f7 l! ^
' f, K1 F6 V7 p4 p8 {, P8 Zfunction f = ObjFunc7Fmincon(k,x0,yexp)
, Q7 [5 F2 d5 ?; stspan = [0 15 30 45 60 90 120 180 240 300 360];+ q" o2 f+ T5 P
[t x] = ode45(@KineticEqs,tspan,x0,[],k); $ N" J O% \, F* a6 ]! O& W) x6 {& a
y(:,2) = x(:,1);
4 \# b' i9 s8 |7 J' e Ey(:,3:6) = x(:,2:5);+ |! \7 }2 k6 y; V
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
* I4 M7 H# B- q+ w + sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
6 y: F5 Y* K3 S; L9 z5 O + sum((y(:,6)-yexp(:,6)).^2) ;2 b; ?: o8 v$ o* {/ Z6 o
0 \% P5 d9 Q; q0 e) w
/ b2 Z2 Y1 s& f. s; ], A" Q3 y5 N& Z$ E- D) z9 D# m
5 j& P8 I, B {
function dxdt = KineticEqs(t,x,k)3 `& A1 x4 a+ K; ^4 [: T* r, a
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
$ q! U7 ~ q7 E9 ]1 X9 S1 ydFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);+ J( {* ?2 Y: Q3 |8 m
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
$ N( K% N# f& V- p! ]. r O. y& vdLadt = k(7)*x(5);
8 [' S) ` T) y: p. zdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
- {. W8 T7 d. E! V, _dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];2 L2 S5 L7 n. c. @% [! O, R7 y
- o( J: K, d2 I5 S5 k, |* L. q7 L, K3 { H! o8 e( o1 Z' R6 y, n1 [; _
|
-
-
Glc.zip
2.33 KB, 下载次数: 0, 下载积分: 体力 -2 点
M文件以及数据
zan
|