- 在线时间
- 1630 小时
- 最后登录
- 2024-1-29
- 注册时间
- 2017-5-16
- 听众数
- 82
- 收听数
- 1
- 能力
- 120 分
- 体力
- 561649 点
- 威望
- 12 点
- 阅读权限
- 255
- 积分
- 173868
- 相册
- 1
- 日志
- 0
- 记录
- 0
- 帖子
- 5313
- 主题
- 5273
- 精华
- 18
- 分享
- 0
- 好友
- 163
TA的每日心情 | 开心 2021-8-11 17:59 |
|---|
签到天数: 17 天 [LV.4]偶尔看看III 网络挑战赛参赛者 网络挑战赛参赛者 - 自我介绍
- 本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。
 群组: 2018美赛大象算法课程 群组: 2018美赛护航培训课程 群组: 2019年 数学中国站长建 群组: 2019年数据分析师课程 群组: 2018年大象老师国赛优 |
% R& t6 ?! M f( N' S7 a$ }
ACMACMer数学建模Python编程起步er数学建模Python编程起
2 D: i! V9 r& L% N) I/ U8 s笔者一建模小白,同时也是一名ACMer。寒假期间学完了数学建模所需的一些编程知识,磕磕碰碰渐渐入门。在此为想要参加数学建模的ACMer分享一些经验。该文该帖系笔者原创,笔者刚入数学建模时,对于数学建模应该怎么样去编程也同样非常迷茫,在网上也没有找到相关的经验贴,故在此给大家分享几点经验。该文会长期更新,欢迎在评论区交流。0 [' [* j9 s4 ], c x
# N* Q8 G2 I" P; H' {! `8 g$ q数学建模和ACM的区别
+ `1 U/ t; o1 o
; h, p3 h$ G3 y! Y8 ] J相比于ACM,数学建模编程主要有以下几点区别:
! |/ X0 q' C5 A- ~' } D- `# w: ~3 V2 Q+ [
1.ACM的编程多是用来直接处理一些算法问题,需要对算法进行创新应用,重点在于算法;而数学建模中的编程多是用来运行算法模型以获得所需的数据,或者是画图、画表格之类的,很多算法模型都是现成的,有很多ACM中的诸如Floyd的算法已经被封装成模块。有趣的是,他们可能是以伪码表示的,并不像ACM模板,都已经写好代码了,这时,就需要各位大佬根据伪码翻译成计算机所能理解的语言。ACM重在算法,数学建模编程虽然也需要对算法模型进行创新,但更多的,重在计算,重在选择最优的模型达到最优的效果。
! C" V7 k, z) e, B9 Y/ P6 Y1 r2 r6 ?& p
2.比赛方式不同,ACM是在指定地点进行比赛,时间通常只有紧张的5个小时,在这5个小时内,需要各个队员的精神高度集中的投入到算法问题的解决中来,而且程序必须是在一定效率的情况下运行(比如比赛时程序应该在1s结束,只能占用256mb的空间,如果在时空限制下没有完成算法问题的解决,是不能记分的)有的题目可能做不出。而数学建模则在3天甚至更长的时间比赛,比赛地点一般在学校提供的教室里,可以随便自由出行,甚至可以是在家(比如今天坑爹的新冠病毒疫情,想必许多美赛选手都是在家比赛)。一般数学模型的解法只有最优最劣与否,没有对错。
( @* X, V- S6 Y* T6 ]- j" h
7 r8 ~/ \! W2 A) B3.可访问资料的范围不同,ACM允许携带纸质资料,选手们通常会把平时浏览过的一些有意义的博客打印下来,还会打印好相关资料,如ACM模板等,在比赛的时候还会有志愿者们巡逻考场,不允许携带电子设备和U盘等进入考场,考场也通常会打开电子屏蔽器,屏蔽相关信号,切断与外界的交流。而数学建模则多要靠自觉,在比赛期间不能通过QQ等通信工具与其他选手交流比赛,要上传给学校。但除了要保证是自己做的以外,其他的互联网资源都是可以访问的。这时,强大的信息检索能力就重要了起来,可以在网上搜索相关的有用的模型,用计算机的语言实现。也有一些学长只是准备了20几天,靠着强大的学习能力获得了省一。 z5 o D* o0 [" d4 ]2 h3 [* f
. j) e4 Y+ c6 g: [) E4.拿奖的难易不同。虽然数学建模和ACM在各自的领域都是属于家喻户晓的顶尖水平的竞赛。但是其实数学建模的水分还是总体上比ACM要高的。有的人也表达过相同的看法,通常一支队伍如果在ACM方面取得了某些奖项,一般情况下,这个队伍里的每个人总还是有两把刷子。但是如果是数学建模,可能就不一定了,输出的可能就是一个人,其他人只是用来给那个人加油助威的。从每年获奖的情况来看,从获奖总数和参加人数来说,ACM的奖项含金量更高。但这并不意味着数学建模没有用, 在数学建模的过程中,将学到很多平时学不到的科研的知识,比如论文的撰写和发表啊。而且数学建模相比于ACM,更加贴近科学。如果ACM和数学建模都能发展好,应该对时下大火的人工智能研究有好处,也能跟大概率获得算法相关的Offer。
6 g/ O7 q! v% B) w. o% @, a: ^4 e2 |. g) ~, `
语言的选择
, d" C+ m, A3 u' \# P
- M& E$ @7 z2 e" h7 C目前主流的应用于数学建模的编程语言主要有两种,他们分别是Matlab和Pyhton。( C) t0 ?8 j& w& I, s
9 Z$ U6 H0 D% p6 g; R9 A
Matlab语言的历史比较早,美国MathWorks公司出品,和Mathematica、Maple并称为三大数学软件。在Pyhon还没有问世前,广泛应用于数学。优点是学起来方便,要学的东西相对较少,适合不喜欢折腾的小白玩家,缺点是闭源,扩展性低下,除了数学之外没有太多的用途。 E6 w8 B$ r! k$ A7 h$ n# j: M% l
4 Y' ?6 l' ^5 ^+ [" ? a
这里推荐一个Matlab语言的学习网站:https://www.w3cschool.cn/matlab/) f; R3 B$ m8 [5 Z
7 S! [( H( `. B4 uPython的大名相比大家都知道,他在深度学习,爬虫,机器学习等方面有很多应用,并且扩展性好,有丰富的功能和优质而成熟的社区,免费,开源,体积小,应用范围广,是未来的主流语言。我在这里向ACMer推荐这种语言,在以后的工作中,也可能经常用的到,并且以后要学习深度学习和机器学习的相关知识时,还会要用到它。但Python对于编程小白则不太友好,可能需要折腾很久。
, U' Q- q: U8 R4 n! ? G
& e* M L* m4 j8 P& j" {这里也推荐一个Python3语言的学习网站:https://www.runoob.com/python3/python3-tutorial.html
/ }, t8 Y8 [2 |0 r1 C/ Q4 z. `( |9 \
注意,我们学的是Python 3.x,不是python2.x,他们两者的语法是有区别的,Python3.x更新8 ^2 v( ]0 Y* B2 P! Y. c
9 a) w) q I! i0 { E: w4 ? r
这个网站上还有Python小实例,可以做一做,提高熟练度,一定要动手去做,如果不动手,到时候就会很生疏( O$ J9 J8 b8 ]1 H
. r% F; }$ Q0 D2 A
https://www.runoob.com/python3/python3-examples.html
4 a% T$ D7 P: l# W: j- c1 n0 i) b% j( ^& `
下面是一本网红书籍,几乎是Python入门首选,大家也可以看看,不过个人觉得,还是上面的这个网站写的好,这本书漏了很多
2 V% \7 U- @0 {. w5 V& V" F9 T) ]
, v9 P' f; Y3 z6 A; C9 g# {
' W8 ?4 t7 F# S/ F3 N4 V& W4 j, Z" [7 j. q, @7 l6 g) b& Z, N) ?
一些需要进一步学习的包$ @: K3 I5 V, T" L: ]4 X
# q- Y+ C* _/ e% k0 b8 k' ZPython的包在他们官网一般都有详细的教程,可惜的是,他们大部分是英语的。国内有些包的教程还没有人翻译成中文,或者相比英文版缺斤少两。推荐大家阅读英文原版,如果实在看不懂就看中文版
/ f" w: }3 k! j9 K
6 _; E4 p V8 b* f& B# K首先,需要学完数据分析三剑客Numpy,Matplotlib,Pandas。这三个包基本上在数学建模中经常用到,一定要掌握,下面分享的是他们的一些教程:4 L# ^- F* C% I" D6 Q1 v* ~
; C. p9 s" I y7 v
numpy 8 R% I2 P, I' d/ x+ S f
中文 https://www.runoob.com/numpy/numpy-tutorial.html1 `1 \; S [- N7 \: M4 P a( H
英文 https://numpy.org/doc/5 h- K# d! i6 P a+ y+ t7 d+ h
# r) F: S& F) f% p7 x; ]
matplotlib
4 {+ e6 |6 t. }( Z/ k中文 https://www.matplotlib.org.cn
. A9 S& J: |0 r9 |6 P# n; q+ C英文 https://matplotlib.org/contents.html- ^2 J5 k/ i0 Z
% H9 f& D1 z5 r7 x+ `, o1 {0 b3 J( Jpandas
, h" H( M! T+ E- G+ E中文 https://www.pypandas.cn
/ }5 i7 K. v0 J$ p英文 https://pandas.pydata.org/docs/1 a" z8 V/ o5 \% g1 r( ]/ }
3 `+ P' E' s+ S$ F+ E下面列举需要学习的一些包及其用途,大家可以参考参考,搜索他们的官网找到教程学习
: H+ ~7 v) l( B" I0 G( Y r
' l; v$ m6 |' z/ G数学计算:sympy numpy pandas1 W% } y1 a& P
数据分析:statsmodels
2 L" d4 ?1 a4 q$ N( Y图像处理:opencv pillow
5 Q8 d) A0 |: @5 c$ k* i1 O遗传和进化算法:geaty/ x n! f. E' _
数据可视化:pyecharts seaborn matplotlib
: k' d7 j V: O( ]1 W机器学习:sklearn scipy
3 c( `# [7 ~; I) J# @9 l$ a数学规划优化:gurobi r, F0 \7 g8 D0 D4 J
原文链接:https://blog.csdn.net/STL_CC/article/details/104740689
4 {3 c0 z- G& A# g$ J C. `4 I {( n2 m5 s
" `6 a7 W K0 r& {. B9 C
|
zan
|