8 F. Y0 ^$ R+ P4 U ACMACMer数学建模Python编程起步er数学建模Python编程起 ; |: ]. D) I: r, b2 ~! U# w% q" C笔者一建模小白,同时也是一名ACMer。寒假期间学完了数学建模所需的一些编程知识,磕磕碰碰渐渐入门。在此为想要参加数学建模的ACMer分享一些经验。该文该帖系笔者原创,笔者刚入数学建模时,对于数学建模应该怎么样去编程也同样非常迷茫,在网上也没有找到相关的经验贴,故在此给大家分享几点经验。该文会长期更新,欢迎在评论区交流。 5 p- h+ @( v) q5 g* } $ r1 t4 }2 T, i* X T数学建模和ACM的区别$ n' N( y a; |& V4 r
4 C2 \6 }0 ~" E G8 M
相比于ACM,数学建模编程主要有以下几点区别:6 `$ J& f7 ~. o+ O
+ ~$ a. Z2 n2 X+ m1.ACM的编程多是用来直接处理一些算法问题,需要对算法进行创新应用,重点在于算法;而数学建模中的编程多是用来运行算法模型以获得所需的数据,或者是画图、画表格之类的,很多算法模型都是现成的,有很多ACM中的诸如Floyd的算法已经被封装成模块。有趣的是,他们可能是以伪码表示的,并不像ACM模板,都已经写好代码了,这时,就需要各位大佬根据伪码翻译成计算机所能理解的语言。ACM重在算法,数学建模编程虽然也需要对算法模型进行创新,但更多的,重在计算,重在选择最优的模型达到最优的效果。( t. h+ ]: o+ B, C7 J5 N z
6 G7 H9 ^6 z5 f1 E
2.比赛方式不同,ACM是在指定地点进行比赛,时间通常只有紧张的5个小时,在这5个小时内,需要各个队员的精神高度集中的投入到算法问题的解决中来,而且程序必须是在一定效率的情况下运行(比如比赛时程序应该在1s结束,只能占用256mb的空间,如果在时空限制下没有完成算法问题的解决,是不能记分的)有的题目可能做不出。而数学建模则在3天甚至更长的时间比赛,比赛地点一般在学校提供的教室里,可以随便自由出行,甚至可以是在家(比如今天坑爹的新冠病毒疫情,想必许多美赛选手都是在家比赛)。一般数学模型的解法只有最优最劣与否,没有对错。6 \( C% T1 F9 a6 m( A6 A% d
2 K1 ~' F# V5 S. X
3.可访问资料的范围不同,ACM允许携带纸质资料,选手们通常会把平时浏览过的一些有意义的博客打印下来,还会打印好相关资料,如ACM模板等,在比赛的时候还会有志愿者们巡逻考场,不允许携带电子设备和U盘等进入考场,考场也通常会打开电子屏蔽器,屏蔽相关信号,切断与外界的交流。而数学建模则多要靠自觉,在比赛期间不能通过QQ等通信工具与其他选手交流比赛,要上传给学校。但除了要保证是自己做的以外,其他的互联网资源都是可以访问的。这时,强大的信息检索能力就重要了起来,可以在网上搜索相关的有用的模型,用计算机的语言实现。也有一些学长只是准备了20几天,靠着强大的学习能力获得了省一。 / j7 G& W5 Z( _5 g ; s' l2 X, Y( K# T4 f; \+ e4.拿奖的难易不同。虽然数学建模和ACM在各自的领域都是属于家喻户晓的顶尖水平的竞赛。但是其实数学建模的水分还是总体上比ACM要高的。有的人也表达过相同的看法,通常一支队伍如果在ACM方面取得了某些奖项,一般情况下,这个队伍里的每个人总还是有两把刷子。但是如果是数学建模,可能就不一定了,输出的可能就是一个人,其他人只是用来给那个人加油助威的。从每年获奖的情况来看,从获奖总数和参加人数来说,ACM的奖项含金量更高。但这并不意味着数学建模没有用, 在数学建模的过程中,将学到很多平时学不到的科研的知识,比如论文的撰写和发表啊。而且数学建模相比于ACM,更加贴近科学。如果ACM和数学建模都能发展好,应该对时下大火的人工智能研究有好处,也能跟大概率获得算法相关的Offer。0 `1 e7 d; f% m
$ o" Q P7 V+ e- V语言的选择3 R, R/ v `; ~$ U. Q5 d
: a! [1 }" `! } _; `, o
目前主流的应用于数学建模的编程语言主要有两种,他们分别是Matlab和Pyhton。) P' N- I w) N
8 n0 h" ^0 r, w0 D' ]* T
Matlab语言的历史比较早,美国MathWorks公司出品,和Mathematica、Maple并称为三大数学软件。在Pyhon还没有问世前,广泛应用于数学。优点是学起来方便,要学的东西相对较少,适合不喜欢折腾的小白玩家,缺点是闭源,扩展性低下,除了数学之外没有太多的用途。# g/ j/ I+ v) _) Z: h