QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1041|回复: 0
打印 上一主题 下一主题

[课件资源] Traffic Prediction for Intelligent Transportation System using Machine Learning

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-10 16:06 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Traffific Prediction for Intelligent Transportation

    : F) i6 U+ l" N' ]- o- B, ?+ C
    System using Machine Learning

    " @5 K, Z& ~( a3 O+ W. F! f$ V% M3 {1 e# Q
    ) e5 U3 H7 d& M4 q6 A9 _7 \7 k+ e4 }( v; N

      n+ \' ~3 j, q$ c1 S! }" o& `4 ~! `* u% G
    This paper aims to develop a tool for predicting0 c8 E6 Y4 v/ o& i
    accurate and timely traffific flflow Information. Traffific Environment" Y6 _$ z( w- g& W/ C+ d
    involves everything that can affect the traffific flflowing on the3 T7 K) @" O4 _1 C
    road, whether it’s traffific signals, accidents, rallies, even repairing
    4 ?1 }. m( I8 E% u" Jof roads that can cause a jam. If we have prior information
    + F, j, ?8 h0 p0 c: U$ owhich is very near approximate about all the above and many9 a' i* }4 [- p
    more daily life situations which can affect traffific then, a driver! F) g% N* j" V$ g2 [8 M
    or rider can make an informed decision. Also, it helps in the( x4 q* g* k0 w; [
    future of autonomous vehicles. In the current decades, traffific data7 I* y$ V: T( z; u
    have been generating exponentially, and we have moved towards
    0 Y3 T7 H* t2 f9 p4 O" \the big data concepts for transportation. Available prediction
    $ f2 `3 \2 _+ T/ x2 ?1 [methods for traffific flflow use some traffific prediction models and& ]- f( d/ ^+ n# A$ g
    are still unsatisfactory to handle real-world applications. This fact) b- `7 Z; e# O5 O% l2 M! b
    inspired us to work on the traffific flflow forecast problem build on
    # W+ g' R7 Z2 [) \6 [$ I2 athe traffific data and models.It is cumbersome to forecast the traffific
    6 [3 n4 ~) L1 I, v, U, |flflow accurately because the data available for the transportation
    ; W& n& x, X7 n" x# T8 Asystem is insanely huge. In this work, we planned to use machine+ i. Z- D: V  J
    learning, genetic, soft computing, and deep learning algorithms) ^7 ~; y# o, J& p. R
    to analyse the big-data for the transportation system with% F% d$ |8 X: V( W" ?1 @6 M: O$ V  X( x
    much-reduced complexity. Also, Image Processing algorithms are
    7 w# d( @6 z2 n$ u8 k4 Z) ^4 Winvolved in traffific sign recognition, which eventually helps for the. M. b8 E* }2 @, G
    right training of autonomous vehicles.2 q( i8 c6 T( m' S* g/ I; E, c
    % e( n9 K; f6 V$ Q

    - S6 [* v: w8 ]0 D: y* K4 I) Y2 R' N1 S8 v. Y8 e. L  t8 `
      v5 Z+ b5 O( l  c& K+ l& h
    , G# g& s4 z2 j4 `; m

    09091758.pdf

    425.77 KB, 下载次数: 1, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-17 00:27 , Processed in 0.323685 second(s), 53 queries .

    回顶部