- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-: l" T' d/ I8 i4 t& I5 N, A
9 L% s. h, \9 Z& Z/ i2 ^
import math; R! V1 c3 X; }' \1 o0 A
import sys
6 s7 j, \$ i9 S+ Z; u, gfrom texttable import Texttable# v; B$ Q. ?$ W6 z' K
: D0 G2 o+ C7 q, o
) ?3 S* j! N. z: m% z* N4 @" J1 U0 b
#- [+ F' t) q Y0 `
# 使用 |A&B|/sqrt(|A || B |)计算余弦距离* W3 D% M9 T g0 m- h
#% U4 G5 ~; K: j" `7 S9 m4 ]
#0 ]% m3 [) J" K: r
#
5 r. C( I3 S! m# i: d/ V$ Edef calcCosDistSpe(user1,user2):
' {( n( V& z J$ j0 V avg_x=0.0* F2 d$ Q1 ?% p9 E5 p
avg_y=0.03 q9 D7 L L/ J) E1 `
for key in user1:
4 l0 s4 O0 o$ E6 x; b0 I avg_x+=key[1]
/ s6 S P3 z1 ]6 x) i( g& K avg_x=avg_x/len(user1)
# d, r! k1 P# N ) ~2 n/ C) N; [) O2 j* I
for key in user2:4 `6 T4 x6 q+ \: L" F
avg_y+=key[1]
) `3 S% A1 y1 l avg_y=avg_y/len(user2)+ a% b6 A; f: o# |& q( M' k
. z7 g' g7 y& o, ~/ H u1_u2=0.0
! v% H! }% z' m for key1 in user1:
% z4 g8 l6 N0 `$ L for key2 in user2:, X* J8 Z5 N. @3 `
if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:8 Y2 H5 p& c6 Q( |
u1_u2+=1
, Q/ F4 _# k8 b' K u1u2=len(user1)*len(user2)*1.00 X* N* f( ~8 K7 e( r+ V% b$ D N
sx_sy=u1_u2/math.sqrt(u1u2)
, s \& ^0 Z/ a- V3 ]2 x4 H return sx_sy, ]2 d E4 t* ?2 w
# n7 }. r$ c: A" Y7 v* K+ J/ h0 A0 a3 X- ]- S0 ~: b
#
. ?, P9 F, w+ ^, y" S9 Y2 t# 计算余弦距离# S( z" q% v1 l( h# s3 z/ v
#
% f( L& @. N1 F0 d3 _' O#- }1 E7 S K- }/ o
def calcCosDist(user1,user2):
% `7 d) Z7 ]- x& V7 _1 ~8 C6 }$ j sum_x=0.0
4 n8 s+ v* d n7 k+ K sum_y=0.07 S/ O; @! S7 y9 }' \, o# q
sum_xy=0.01 Y7 d, H$ k: m1 U2 ^( N/ k
for key1 in user1:
" p2 j, R$ \$ }, Z% C for key2 in user2:
$ C& C3 Z5 P o& V if key1[0]==key2[0] :2 G8 F2 T1 W: u) B& a
sum_xy+=key1[1]*key2[1]
9 ]$ d9 z8 L4 a: P+ p sum_y+=key2[1]*key2[1]1 m) o4 L0 C) a1 c2 ^
sum_x+=key1[1]*key1[1]
* Q5 N3 B8 \ j. c6 V. Y
: c# I9 B/ D2 e: ~ if sum_xy == 0.0 :
3 G5 b/ ~# I0 f( L8 z9 B return 0, w1 d, h# A2 T$ ^7 t1 K8 ~
sx_sy=math.sqrt(sum_x*sum_y)
/ o1 M; [$ } e return sum_xy/sx_sy
; Y; ?/ E# Q8 G* H9 A& v
7 y% C$ f/ h/ V
5 r7 O- i4 q' Z# {#& p8 E. n+ p- r' |
#
+ C7 j9 o& a, S) e% t( O# 相似余弦距离
" `* F# ^1 _# @#
; K A/ R0 V) y) ?8 v#
7 O! K( p/ u! L2 b: _! u#
( f, Q7 q8 L: Y% vdef calcSimlaryCosDist(user1,user2):0 y' B9 ~ E2 L' s6 A
sum_x=0.06 n; c+ s$ B7 H4 f+ I; l7 R9 a( U
sum_y=0.0
% e4 Y3 @* B' v% }4 W sum_xy=0.0
P+ b6 N5 G4 c; R5 V2 P! ~/ ~. p avg_x=0.0 D7 T4 a. m7 P7 s
avg_y=0.0
+ u% s& E9 ~3 B+ U for key in user1:
+ u. u/ k! j; r4 K/ A avg_x+=key[1]
+ C) C4 ?8 X+ h7 h$ [, g avg_x=avg_x/len(user1)5 f( z5 {& E) n( q- d! m3 M
4 V( C& d8 X6 _; D for key in user2:" a' F6 G! Y% Y$ ?; {( E- v
avg_y+=key[1]
8 L7 v" [3 O2 A( W6 | avg_y=avg_y/len(user2)+ q k/ A1 g3 i1 ^) s% [
5 g* H6 U, R2 p! S( R& n) V
for key1 in user1:
' g, L: W9 c8 z+ y4 | for key2 in user2:5 U; s% }* k5 X# x* Q
if key1[0]==key2[0] :+ w: b( Q# w% R) s
sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)0 p6 q) ]! d B7 P% K# S
sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y), I3 s0 F7 j, a
sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)6 k" j U' V7 E; x& t# G1 W; T( |
: e3 H* C( X2 N1 r0 y if sum_xy == 0.0 :8 T/ t5 Y$ a3 m+ j, X; h
return 0/ e8 H1 L% l1 k: R p
sx_sy=math.sqrt(sum_x*sum_y) 1 w' [5 F( J# {
return sum_xy/sx_sy# w1 k6 e5 y: H/ N: H7 u
' Y: r- @( u/ D% k2 m; s) y0 K
8 K% N' p, Q# @8 l5 K#1 d% ~$ ?0 g. _" a/ H7 t
# 读取文件- N8 y8 r; ^0 |2 ] b& x
#
! g4 A4 f) }$ t#
) h! P$ t, n# @/ y, \4 |5 G) @/ L" jdef readFile(file_name):4 L$ P' K; F8 J6 ^, @
contents_lines=[]
9 p* q( A+ J, R& h% F. L f=open(file_name,"r")
6 d2 @3 }% S1 M! Q0 h2 t contents_lines=f.readlines()
3 p. o1 C$ f, E5 ~ f.close()
' }% }. _$ M" j8 E3 b- X I+ n! s return contents_lines( P( L3 v9 P% g
$ l/ I$ i6 q; N/ Z
8 S. f. g/ v. A9 S) `
. |3 B2 c& Y; E2 E#
1 }" T. I4 U0 q& L- o5 C# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间
& C& L) q. i* n" {! _# 输入:数据集合
: m7 x* b1 U: U# ?1 ^# 输出:已经解压的排名信息8 `. P8 G0 P+ [, P4 B p" j+ c
#. ]6 P' v8 S: L$ y& T" _7 I
def getRatingInformation(ratings):
2 o/ |+ d3 p: j; }7 K rates=[]8 _3 I' c) X! k; y0 j
for line in ratings:' [# C' ?$ }- _) `6 w
rate=line.split("\t")
: r% [2 u2 O0 j1 M9 @3 ~. p$ o+ ~ rates.append([int(rate[0]),int(rate[1]),int(rate[2])])
) m, `8 r1 m2 L) x3 W! T+ t; f9 M* V return rates
0 s& {, g; i, e5 q# h( {+ p e8 {5 X% O _3 w* Z
3 N% S2 k: u. S4 j5 N#
* x$ b7 i$ w# ^* X1 v( L$ M7 W# 生成用户评分的数据结构+ y& m4 U5 p) J4 |
#
9 o$ F3 L& d$ i2 z4 N& s# 输入:所以数据 [[2,1,5],[2,4,2]...]0 ^) M i+ s. i' A8 ~
# 输出:1.用户打分字典 2.电影字典
' Y1 ^, ]$ l$ F6 e4 Z! ~# 使用字典,key是用户id,value是用户对电影的评价,
% F, W' y8 C6 d0 N# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是2
" \: ^2 ~8 }6 Y, {& T/ O7 _#( g* H/ [; T2 j6 l. l0 D
def createUserRankDic(rates):
% W: j) K3 R- A; M user_rate_dic={}& a, F1 x8 i4 ^1 V+ ~, Q6 f" D
item_to_user={}5 w; s' s0 I6 }" R0 d
for i in rates:0 w: a) H4 C+ P# a [8 J; |& c
user_rank=(i[1],i[2])3 A2 E) @, ?, b/ d/ {
if i[0] in user_rate_dic:
. @% i" P3 p; k user_rate_dic[i[0]].append(user_rank)6 \2 ^$ x' y5 \# A# X
else:
2 u8 o [) ]3 H1 Q2 i; j user_rate_dic[i[0]]=[user_rank]
3 i+ f& B$ ^& d h" P
4 {! R" |# _* M9 c if i[1] in item_to_user:8 l$ O1 W9 d+ f. U& T
item_to_user[i[1]].append(i[0])
! ?2 G- } k! s$ t# m+ Z else:, r: L0 u f0 ^; [- D+ o/ i7 Y
item_to_user[i[1]]=[i[0]]/ f& T! W6 B" x- {% e1 [; x
5 u: Y( [. z, x
return user_rate_dic,item_to_user- q, W. N( I5 X- q3 x9 z" u* y' ^
. X- z1 V* d4 T6 A+ j& F$ X
4 Z( O' s7 H" `. e' O: X
#4 }3 p4 B6 A' b6 c2 [6 D/ k
# 计算与指定用户最相近的邻居7 \: R; ]7 [$ v7 x, ] a
# 输入:指定用户ID,所以用户数据,所以物品数据' H# _" F( n' l( f5 S4 A
# 输出:与指定用户最相邻的邻居列表
1 Z- G, J/ M$ y" p) M#! i. n' t: k1 D+ m* p7 [
def calcNearestNeighbor(userid,users_dic,item_dic):& k5 W+ g, K- }
neighbors=[]
$ ~/ f: ?5 \0 p- |5 M #neighbors.append(userid); t! C3 s t7 R0 h( i3 T/ R
for item in users_dic[userid]:2 m7 k! x2 d- y! \. k% y b0 h8 ~
for neighbor in item_dic[item[0]]:5 w' c! O( x2 H$ G" f( q0 ^* J. @
if neighbor != userid and neighbor not in neighbors: 7 q! G0 @5 V6 p
neighbors.append(neighbor)
2 v0 Q2 f4 g& ~( p8 B& Q- I 6 Y9 C6 O# O5 P9 S& l& _
neighbors_dist=[]
; H8 a9 m- u1 L for neighbor in neighbors:
/ S. T2 z7 w+ b! b) F+ l. ?) C dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe
h5 r6 R' f. u) H& E neighbors_dist.append([dist,neighbor]), F- h5 d1 X: \. H) [- d, U6 V
neighbors_dist.sort(reverse=True)
3 w' V" R' f% \ #print neighbors_dist6 \! K, y' ~. V( {$ ~
return neighbors_dist
! y# y0 `- ~2 O7 F) x" i, c7 C% R: r( h
2 w; ?8 a: d/ M#% k$ t, C$ E; l2 B u, ]
# 使用UserFC进行推荐, Z6 O8 j/ O9 Y# Z; D1 [
# 输入:文件名,用户ID,邻居数量
6 i- @ M5 c: D2 C# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表 D5 a$ E7 Z) {9 r% W' j0 J, [1 {# O, k
#' u/ n2 C6 L, f+ F9 g
def recommendByUserFC(file_name,userid,k=5):
m3 b- M: }2 Q
2 ~+ u/ U1 N4 a1 a4 I [/ r. v #读取文件数据) H1 `+ E/ J; ?) z; A
test_contents=readFile(file_name)) ?( P% U6 a% u. z( F; C
1 N# B+ I7 } D) _ #文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...] $ ~8 z% P! X* I( ~# y; P( U0 ^3 n
test_rates=getRatingInformation(test_contents)
2 Z4 R: A4 @" {& @5 f, f. c1 w 1 t8 \8 @2 J* M
#格式化成字典数据 0 S7 P% P* [6 K D: i
# 1.用户字典:dic[用户id]=[(电影id,电影评分)...]# o' k3 u" J7 H$ S) B
# 2.电影字典:dic[电影id]=[用户id1,用户id2...]1 C% E! [; y" V0 p
test_dic,test_item_to_user=createUserRankDic(test_rates)
+ U' ?( k' h) `, [& z- j- \ 3 X0 g7 h3 v5 w, Q- o
#寻找邻居8 o' h! R# ^/ ~5 f
neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]7 ^/ i6 h; F0 Q
% t. ?' [9 | \2 V# K+ ]) I recommend_dic={}
9 Z" e; b" p7 s for neighbor in neighbors:
- f5 O0 L' }5 K6 v neighbor_user_id=neighbor[1]/ ~# G4 z# q% v% s& ?4 {1 ^
movies=test_dic[neighbor_user_id]
, N, q7 z( z: n- P for movie in movies:
5 H( D" |5 F: n/ S9 ? #print movie
3 d- k0 @7 p B4 q% n if movie[0] not in recommend_dic:; `4 I u8 _* _$ S, F
recommend_dic[movie[0]]=neighbor[0]9 H' q& Z$ n, C- m
else: I/ ]8 p n) k3 _1 \
recommend_dic[movie[0]]+=neighbor[0]6 Q1 [0 @8 D, M
#print len(recommend_dic)
- Z% Y/ V9 d4 r ` y
% g1 S, Z! z& a, K" t; `8 U #建立推荐列表, K% y1 W. j" ^) J) g
recommend_list=[]9 H4 r V5 u/ n% N" \0 q
for key in recommend_dic:' _8 F/ i9 w0 x3 t, b
#print key
2 ]$ M7 `, u. O4 }8 p recommend_list.append([recommend_dic[key],key])3 [/ d) d X6 V2 _* v4 z& O: z: @
7 R. T1 M6 }0 ]# i# F) Q. }
& i" O9 [; E7 u: _ recommend_list.sort(reverse=True)6 P! F* d, K: ^. z% k% g
#print recommend_list
4 f1 d# v' w$ a2 K" k3 ` user_movies = [ i[0] for i in test_dic[userid]]0 N+ }! c/ G: T. ^% S
$ [( m* Q4 ^0 ]" t: P5 j return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors0 g: a& H. q4 q( p3 f. o6 E# [/ w
, M5 K6 {6 O+ [* N7 A) {1 l; V) s
4 w2 S% m$ O7 L; j4 V* m9 e) A1 ~" _! X7 ?9 @# [
#
- W5 e, X1 J8 L [5 v1 ^#% {2 G4 x7 o, y$ [/ ]
# 获取电影的列表; O" z+ ^: N7 ^; Z5 J) Y
#8 u q: W2 x. v) p
#
" O1 c0 u' U1 n. Q: A t#
: `2 x! [, z+ P3 }+ zdef getMoviesList(file_name): Q$ R4 y# R& j
#print sys.getdefaultencoding()
+ ]' T! b- S, @0 b1 C: C! i" | movies_contents=readFile(file_name)
# l6 T+ R' v1 r/ [& [) | movies_info={}
- |& A/ L: n( b' k7 |% A7 M/ b for movie in movies_contents:
. a% y: a2 W+ L0 \3 Q1 U2 | movie_info=movie.split("|")3 C% _' q- q9 X* S' Y+ ]
movies_info[int(movie_info[0])]=movie_info[1:]/ c1 U4 K2 s( U( G
return movies_info
+ f: f# y7 p; o+ ?+ K
9 W+ O2 P M5 D+ x% a 7 Y3 f- J+ z4 E
: x' x- f- Y& C: Z" L' c, ]9 C0 L6 S( a
#主程序! E! Y) S2 A! b ]. s+ q1 m# z
#输入 : 测试数据集合0 e) `+ j3 }% D5 C; J
if __name__ == '__main__':( w) B: w# x9 O: p; |2 U
reload(sys)9 k% F: M' V; V1 X- P
sys.setdefaultencoding('utf-8')
' a. V2 s$ z6 R3 f2 [, l movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")- n$ M3 s/ p/ a( w8 j' @6 @
recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)
( R7 X) ]; I- J neighbors_id=[ i[1] for i in neighbors] \- r- f1 J4 u D
table = Texttable()
3 j, o; h: _7 Y0 b! n0 b& S7 b table.set_deco(Texttable.HEADER)
8 N$ _9 s+ [/ y4 Y z table.set_cols_dtype(['t', # text
2 e. J: c( s# u2 v 't', # float (decimal), a( w# O" X! A% j; ]
't']) # automatic
: [1 r9 \9 n. k4 ^8 @# P: V E1 a1 J table.set_cols_align(["l", "l", "l"])
% ~8 D8 [4 U! M u. ] rows=[]/ |6 W- F0 S8 |" N1 `
rows.append([u"movie name",u"release", u"from userid"])7 G. i4 O1 K/ l$ ~* v
for movie_id in recommend_list[:20]:
3 t6 A+ W; @$ `4 r' U: a1 W from_user=[]" R1 O& n% q5 b' d; j J
for user_id in items_movie[movie_id]:
4 i& Z6 k! `1 v* ]+ P if user_id in neighbors_id:
, P! [. o, S. D& g# J from_user.append(user_id)1 p8 l$ K. A7 Q7 ^. u
rows.append([movies[movie_id][0],movies[movie_id][1],""])* p: n1 W4 ^* t7 L6 R; b; I
table.add_rows(rows)+ D. w$ J: p a1 W/ S/ ^# _
print table.draw() |
|