- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
|---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-
% S! E0 J2 Z* ~; R2 @
5 S4 {* }( t/ Z) W3 oimport math
9 w5 ]1 _2 A# C4 o; S9 r6 l# `: Kimport sys
7 c2 @3 Z: c+ v- C$ \from texttable import Texttable. M! c9 l% `% m
- T: y- |: @' |1 r, I* C! Y e" t% H+ E0 E+ T
#6 G& L( T6 v* K' O3 J' G# r
# 使用 |A&B|/sqrt(|A || B |)计算余弦距离
8 Z. l& I: Z- k2 V$ [. M#
0 {* y- O- ? O6 V y2 k3 B5 Z. Y( q#! ^- Z) Y& p) l/ P& Z% E! r
#
9 u0 I( [ V0 k' W& i# O6 P4 ^def calcCosDistSpe(user1,user2):# I, B+ s0 d# Z5 u1 O: |
avg_x=0.0% F6 k# C( D" z; i% ?
avg_y=0.0
. B+ w& v) k& i1 B; G/ x7 i% f4 Z for key in user1:
! _% j1 A; H( I' k# U; ] avg_x+=key[1]& s1 F9 F5 K+ C9 }
avg_x=avg_x/len(user1)
; `6 J3 \, L7 @* B' J# ?
4 y8 \6 i# @$ y' U for key in user2:
+ N# I& S) e/ y# K avg_y+=key[1]! _: C, u% W/ p0 r
avg_y=avg_y/len(user2): w; N) o* ~5 ~% R& v) B
& l4 w; f& ]/ f4 O; J u1_u2=0.0$ u4 V) E8 e: B% H5 u! J
for key1 in user1:& s8 x- i" Z+ J% K! C
for key2 in user2:
. x) h- X' ?: l8 O' r. i+ T if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:
( G0 l/ }! V/ N- C) |3 G u1_u2+=18 ]9 l3 o9 p) T
u1u2=len(user1)*len(user2)*1.01 V' }9 f" c3 @% o$ Q! u7 L
sx_sy=u1_u2/math.sqrt(u1u2)! z: y$ e1 A# f4 y: n
return sx_sy' g3 @& [" A5 Z" @, Z9 [' g
* Z& ~* a3 N1 b2 t
" x. f7 K( J4 r, v' t" ]#5 _; e) h& [9 l! m. D4 L- D
# 计算余弦距离( V+ Q8 z: [$ b' @( t0 V2 [$ h
#' f6 S& S; `8 l
#
: [2 q9 ?, q w1 \def calcCosDist(user1,user2):
$ l/ L& O. V( k9 e3 s& z' S sum_x=0.03 s' D1 Z7 o3 T8 ^
sum_y=0.0
$ b, N5 {! T" J sum_xy=0.0
% [; O H; o/ X) e for key1 in user1:
/ o e- o' U9 l, w# R- c. E7 i: h for key2 in user2:/ Y( ~& n$ l* Z% M. V# H9 _8 n; g
if key1[0]==key2[0] :3 E! r5 y/ I3 R' \
sum_xy+=key1[1]*key2[1]/ F; m; i! {2 t5 j: ]) V, \
sum_y+=key2[1]*key2[1]
0 @" ?5 ?+ m6 Q2 |# M5 O sum_x+=key1[1]*key1[1]- ]: ]5 N( A! k2 W
( ^; Z; ~8 [# ]; Z% N- ]0 W if sum_xy == 0.0 :% s8 K: E; s, s6 q% m7 o! h; q
return 0, t( ]2 s2 T$ K$ U' l8 h0 N
sx_sy=math.sqrt(sum_x*sum_y) & b# _* H6 h6 R [0 D" R& E
return sum_xy/sx_sy6 b- |3 h$ Z8 @, a6 r
7 b% J- _3 @) W. H3 C/ _; i
% [0 K( o0 V8 M' Q, _) w6 y& F
#
: d* a- `$ k3 _% h3 z R- F5 T#' j2 d0 a8 X3 k O \0 C
# 相似余弦距离( E" K3 j+ l+ ?& n9 |+ I% g% H
#
- i, ~8 ?7 j3 K2 |6 X: `9 {5 ^. b#/ O$ [1 h! Q5 W* H( E& t* C- L
#9 G2 L0 |1 U4 j z* q$ E/ s
def calcSimlaryCosDist(user1,user2):; @: S2 W' g" k8 o
sum_x=0.0' e5 H2 X2 J% i2 L
sum_y=0.0
3 R% V6 Y- s# O1 x& r3 H sum_xy=0.0
' h6 r& G# N; [ avg_x=0.0/ t+ a/ j8 z. i9 [$ b- H7 P4 N* r) h
avg_y=0.02 b) S. g$ P7 X6 _
for key in user1:' A- e; P) i9 y$ Z; w1 l) c& f3 H
avg_x+=key[1]
" x% f a6 Y$ A) x" w! y- ? avg_x=avg_x/len(user1)
. @+ V) ]4 h2 `7 U
1 M+ e* N* B# L. i for key in user2:4 F6 V3 ^7 V7 O" v' ^
avg_y+=key[1]' T1 s+ C6 X4 b0 U
avg_y=avg_y/len(user2)# f: h" r" F) U. K
% D" v; c) }" w! ] for key1 in user1:
" c; V; B( l( q; T$ k% V; c3 ]7 ^ for key2 in user2:
8 L0 }2 J( q/ s7 O if key1[0]==key2[0] :$ }" }0 } S% T
sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)' V: Y3 Z8 E$ Z* E2 `
sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)) S+ b6 g$ u( ~1 k K2 Q0 Y
sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)0 Q' m% w: C4 J, O: b7 a5 D2 ?
: s9 h6 v; A6 P1 Q
if sum_xy == 0.0 :$ n& y. W0 d- M+ H& J- y
return 0
. M% f# E7 Z f- B6 C- } sx_sy=math.sqrt(sum_x*sum_y) + f0 B4 B* ?% {
return sum_xy/sx_sy
: O$ t, f5 @; T$ r
- \2 L, F' K) T% G7 h' { ~( R) L" r% Z! v3 M9 `
#
u6 w. Q, d3 j6 ]6 a2 ^# 读取文件2 t; h' l$ C. J3 @9 ?- W4 ~
#
+ o& k" ~$ }& n; P# z& p3 o#
4 ]* y) o- e. X/ Qdef readFile(file_name):4 ~$ v1 P5 i+ K
contents_lines=[]
0 D j7 o/ T; [* k f=open(file_name,"r"): u9 s/ F; ]# e t' Q! P! K
contents_lines=f.readlines()
1 Q3 p" ^9 T, c0 z4 |; P# [( G f.close()
. n6 H' b% h6 f& Q return contents_lines
- v0 K: H# ~5 s( {, l5 P/ }' r. o' L. j, `+ ~ p C
/ O2 I% \- B2 C+ F- f9 O! d( V
: a0 S; }7 [0 x2 ^1 b' D
#
5 \& M( b* s* e" q% R4 ?9 x+ [# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间/ w9 V; o* h1 M8 @* E
# 输入:数据集合
9 n2 j5 y3 V1 N1 w0 i! B8 f% Y# 输出:已经解压的排名信息
5 b' K* p9 C0 [. L#/ C; \# k& f ~3 i/ [. j
def getRatingInformation(ratings):. a5 \3 J5 _' r7 [1 v
rates=[]
# U; X f* U; k2 O1 M for line in ratings:7 a" w% Y( n+ f
rate=line.split("\t")
; U/ a0 k3 o/ h8 g2 ^2 J rates.append([int(rate[0]),int(rate[1]),int(rate[2])])
/ I- d9 v. Q! z4 O' t return rates5 b- Q* }$ M9 V- z
. r) `- V- J# T2 S, o6 E
: u, p. |6 T/ ?7 Q, M- @7 ]; F$ d#
5 ]6 a* Z: L! `3 D h8 j# 生成用户评分的数据结构2 s0 k; a1 E. O2 R# K% V
# 5 r# E, T# P: M
# 输入:所以数据 [[2,1,5],[2,4,2]...]
# E9 j+ {* I2 P) [3 q7 g0 G# 输出:1.用户打分字典 2.电影字典, d/ \3 S( k# ^, ^+ I
# 使用字典,key是用户id,value是用户对电影的评价,0 V. G3 n3 ]# X. R. g1 B7 J
# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是2
7 O/ z# ?7 m/ I1 y- m4 i; w#' `6 |+ `6 |- b& L7 Z
def createUserRankDic(rates):
5 t/ |2 I* |+ P user_rate_dic={}
" ?; Z" D/ B2 w8 R5 E item_to_user={}
e% q h" B9 H5 s5 O9 k for i in rates:5 k$ y/ S- Z4 l& q! E
user_rank=(i[1],i[2])
$ L4 Z( z+ D0 b if i[0] in user_rate_dic:
" }& m! z; g6 T user_rate_dic[i[0]].append(user_rank)
4 ^5 Y$ b' H5 F$ R" L else:# X5 r* v: w! @' h9 d- ?
user_rate_dic[i[0]]=[user_rank]
( M/ {# O' b- \2 Q3 ^" J s8 `" C$ j" {9 _# t0 g8 e
if i[1] in item_to_user:6 z5 C" V, y' X/ k& A
item_to_user[i[1]].append(i[0]). k( ]9 m1 ^! x4 b; q4 T
else:9 q8 a4 X9 ^$ ]7 E. G
item_to_user[i[1]]=[i[0]]
% c& {7 a4 s$ j4 v+ E) I # s$ ~- H" K/ B5 E2 t* \$ {
return user_rate_dic,item_to_user
1 n& e2 ]* m" X# q/ ]2 F/ ^3 n) l4 B2 K6 o. L
: c- o/ a3 v8 c/ v1 Y1 C& K#
- R7 K6 R1 n2 w$ c# 计算与指定用户最相近的邻居/ X+ l7 |* h3 b! u
# 输入:指定用户ID,所以用户数据,所以物品数据
" Q; E% M% e/ A* p1 m# 输出:与指定用户最相邻的邻居列表
7 N) z/ W7 r: A ^1 W% T% ~#
. V# D1 }" B* x; `def calcNearestNeighbor(userid,users_dic,item_dic):9 P& u0 o- B a( ?9 H" z" O: V
neighbors=[]
) D, P$ ]- G6 F0 ]7 C3 O #neighbors.append(userid)6 `( v- ]' R( D( Q G1 B3 w! e
for item in users_dic[userid]:
: n! y4 x4 ~$ O for neighbor in item_dic[item[0]]:2 n. I& \" B8 G, W& {" h, Z
if neighbor != userid and neighbor not in neighbors: % @3 R" @* D; \6 T& m* n6 g# m5 ]7 @
neighbors.append(neighbor)0 e6 K/ n( v6 e4 G8 C
# K9 p; f7 Z4 i0 ~- s& O neighbors_dist=[]: [ f( p! x: g5 \+ w! y
for neighbor in neighbors:
: H4 H( F& \" I" J0 X. D dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe& n6 n+ [' h* I g0 ^
neighbors_dist.append([dist,neighbor])
- r! i% Z1 E3 x5 A; f neighbors_dist.sort(reverse=True)9 U$ h2 _$ {; R- n7 P% i$ I7 Q
#print neighbors_dist! k8 a% I% Q9 m1 t5 X! \
return neighbors_dist7 N7 |. r" [! W
& y* R9 t, s. p( e& s7 S/ `: J4 g( K$ X- h, @: ]
#; K% N! J) I5 p B) S
# 使用UserFC进行推荐9 r7 f0 I+ H! j4 R6 g1 g
# 输入:文件名,用户ID,邻居数量: U1 L, v, Y V/ K' K; t/ ]3 r
# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表" G& Z; s S: L
#
+ R* ]0 {" U+ s3 |def recommendByUserFC(file_name,userid,k=5):
& S- H+ \6 Y1 E) h9 {. c# O r `6 a+ R* t/ h2 r+ V
#读取文件数据
4 K E) [3 C7 r: S+ ^; k7 n4 c test_contents=readFile(file_name)
3 `; `3 u0 e# y
" R. n) @( g5 j0 M& T #文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...]
. j7 F* D9 I e5 c, a) T! \ test_rates=getRatingInformation(test_contents)
* ]/ O5 G O8 P ) @7 K" u. Q" d |, M, v
#格式化成字典数据 3 C3 R* @; Z1 \# v
# 1.用户字典:dic[用户id]=[(电影id,电影评分)...]
; O$ G4 Q4 v; x, h # 2.电影字典:dic[电影id]=[用户id1,用户id2...]
7 r" g& D5 ?/ ~2 D9 p! V# q test_dic,test_item_to_user=createUserRankDic(test_rates)2 w; k+ t l8 T& Y
x; M: g9 |* n #寻找邻居9 S" i1 Y, |0 f' r/ m1 J& e
neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]4 `. C1 U( R+ f5 T- g3 {+ w1 f
# |! e1 R' Z. \4 I: { Y recommend_dic={}
; t' T6 e# n- F; R4 m: ?- _/ n for neighbor in neighbors:' a% J: x9 B- H+ ?" ^
neighbor_user_id=neighbor[1]4 t* C( I# H0 R5 \$ b ]
movies=test_dic[neighbor_user_id]
5 {( N& `; ?3 F! A for movie in movies:) D ^$ L: H! E% n' F
#print movie
# }+ E" g* z- w+ C" u; e if movie[0] not in recommend_dic:
* ^8 E, K% j/ n0 Y9 h recommend_dic[movie[0]]=neighbor[0]
) t" G, N( ~+ Y, d g! X9 Z8 } else:
0 D! J4 T% y9 t8 P7 h recommend_dic[movie[0]]+=neighbor[0]
& P2 W% U$ Q- Z+ ~ #print len(recommend_dic)6 j1 t1 d+ }9 ~, E0 M
9 K$ E7 c; b7 u& h, K" W, k
#建立推荐列表# l6 S3 s, ?6 K$ A) z! ~
recommend_list=[]& T% S: E3 q' p; S9 H
for key in recommend_dic:% N+ ]' h& T* U, [' `2 h4 u7 i
#print key! J \# t5 R) a9 }
recommend_list.append([recommend_dic[key],key]); l7 A7 K( n5 {8 P, P
, M4 @" |7 E% ^9 g3 B! e
) Q+ x, c" y: c; b recommend_list.sort(reverse=True)
1 g) @) @) ?, k; R2 x2 x #print recommend_list
9 I( | }6 o) k5 s, d& z7 g# A* C user_movies = [ i[0] for i in test_dic[userid]]
! |2 n( r% g2 R8 m- B3 _: O3 N# ~ P! T" I2 O* l
return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors
+ a2 @; Z: i5 C 3 b! a& c# W, b7 r
! u+ D4 d3 m5 Q5 o& b* N5 @+ d1 _1 A8 ]5 r% g
#
/ c2 n5 {* n5 u' g* f! W4 k, z$ E#
4 `! `* U# m7 y# 获取电影的列表
. f8 s; h, k `& e8 m* O+ H#6 x& q K- g1 o l; M
#
7 [$ l" D2 Y; a: [# Q#
6 ^' v# Z8 g5 }. zdef getMoviesList(file_name):# {6 k$ Q5 s3 y2 h5 \* [7 n
#print sys.getdefaultencoding()3 D' u' N1 f- _4 v7 {8 t
movies_contents=readFile(file_name)
$ E! e r5 g) F0 W1 b movies_info={}
* S4 i- v/ J5 F: Z) J( ~8 F for movie in movies_contents:
; m/ S9 c" P) F4 g3 O movie_info=movie.split("|")% s5 |' u! |' s+ J) ]4 c
movies_info[int(movie_info[0])]=movie_info[1:]( ^" N# Y# s5 v [1 p7 R
return movies_info2 }/ s, M1 T) j9 ?0 q
4 r' k6 y4 A r
) R5 ]2 G+ r3 P7 E& L2 F$ R
5 Z+ ^) L8 i* b# e8 N* C" R" c#主程序2 ?9 w$ V3 J8 n) {' z- R7 ~
#输入 : 测试数据集合
) |7 f( L' N+ \+ nif __name__ == '__main__':
2 G9 \+ E; k# c' q3 t7 E reload(sys)7 L- F8 K# p# @5 B' ?0 b
sys.setdefaultencoding('utf-8')0 ^; {$ }! u% w1 g$ [. m
movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")
. z8 |7 O: }) r& ~ recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)
! u$ M( L8 \( H neighbors_id=[ i[1] for i in neighbors]
5 R$ m9 u, v7 H: L# {0 C+ C: x table = Texttable()
. c' t7 R" J) a: }3 Y& n, B. P table.set_deco(Texttable.HEADER)
0 w7 Q; F1 c! x' |- \3 t: Y+ e) A* i table.set_cols_dtype(['t', # text
" R9 z7 O1 ?. k$ O4 K' r/ m ] 't', # float (decimal)$ d9 B! L4 }" P9 y# d: m( k* U
't']) # automatic
% y# b* R" A: d( c3 F# Q4 J table.set_cols_align(["l", "l", "l"])6 u! F1 }8 r3 q
rows=[]
4 N. O+ y K- f) w) {- \ rows.append([u"movie name",u"release", u"from userid"])/ K/ T4 O4 @/ d1 y3 X
for movie_id in recommend_list[:20]:
& T; u, k- R5 |3 I% | from_user=[]# T2 t8 e6 t1 O: k9 x
for user_id in items_movie[movie_id]:3 T9 l+ y* V6 g% |# h, p1 c+ x3 F
if user_id in neighbors_id:- y8 |4 v* G( S. ~9 `& P7 w
from_user.append(user_id)
( _# A/ B9 i3 s& Q4 i5 _ rows.append([movies[movie_id][0],movies[movie_id][1],""])# N3 Y- ^& w8 I* |& J5 ?4 ~
table.add_rows(rows)
" b$ _+ W& a+ F# @+ W3 i4 w print table.draw() |
|