- 在线时间
- 5024 小时
- 最后登录
- 2022-11-28
- 注册时间
- 2009-4-8
- 听众数
- 738
- 收听数
- 1
- 能力
- 23 分
- 体力
- 76949 点
- 威望
- 96 点
- 阅读权限
- 255
- 积分
- 27011
- 相册
- 1
- 日志
- 14
- 记录
- 36
- 帖子
- 4293
- 主题
- 1341
- 精华
- 15
- 分享
- 16
- 好友
- 1975

数学中国总编辑
TA的每日心情 | 衰 2016-11-18 10:46 |
---|
签到天数: 206 天 [LV.7]常住居民III 超级版主
群组: 2011年第一期数学建模 群组: 第一期sas基础实训课堂 群组: 第二届数模基础实训 群组: 2012第二期MCM/ICM优秀 群组: MCM优秀论文解析专题 |
2#
发表于 2011-11-28 10:48
|只看该作者
|
|邮箱已经成功绑定
matlab下面的kalman滤波程序
1 |# _% C3 b; H4 M) Rclear N=200; w(1)=0; " ]# i- f3 a2 u0 O+ Q
w=randn(1,N)
! t6 ~8 \* ]' f9 Y" O2 k I: ~x(1)=0;
9 p9 m, c/ t7 |1 B! V; k- ja=1; 3 v. H2 }) \/ C4 }9 v+ \
for k=2:N; 4 s6 o/ c% H; g, @
x(k)=a*x(k-1)+w(k-1);
9 x9 E' G% e, C, uend
9 x# V) r# h. X l/ q! YV=randn(1,N);
. C' y. s+ {, {$ m+ t" k% Bq1=std(V);
- t( t5 m# S) U6 I9 BRvv=q1.^2; 8 K N, @+ o) o! ~
q2=std(x);
# A- ~( ? K5 i6 [7 @% pRxx=q2.^2;
$ c1 t8 X2 M8 P cq3=std(w);
/ k) u6 A% y" Z _ [Rww=q3.^2; 4 ~0 y: t4 q3 _" ?: L
c=0.2;
. K, m: \* s3 @0 gY=c*x+V;
% H, m9 ~) S# r7 m9 mp(1)=0;
+ m8 x4 c% M* p+ q" l) j) vs(1)=0;$ r6 w: p3 O7 c2 R' o
for t=2:N; " r1 c) w) I" p( R; Q# Y
p1(t)=a.^2*p(t-1)+Rww;
7 l) ]8 K1 B. N$ t( c. Lb(t)=c*p1(t)/(c.^2*p1(t)+Rvv); 8 O+ X- w, k% J+ U" `8 D% i
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
W1 B* J4 E7 }7 e; q1 `% C. w8 up(t)=p1(t)-c*b(t)*p1(t); 7 T& n* {/ \: G6 w4 M1 _
end
) I7 _$ i9 O% J& K+ { l' `t=1:N; - B) f6 |$ b" T+ f, d- m5 G
plot(t,s,'r',t,Y,'g',t,x,'b'); * o a. N: {! y S. G. A
function [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin)
- v( _0 r- J' U1 g& F0 S% Kalman filter. ! X! B( S0 i' W
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...) & c' x/ H4 v) z0 G! t" v& n
%
" O! s* W8 e& V8 z6 n% INPUTS:
' b h4 ~3 J/ w5 u' x4 K# s9 E/ N% y(:,t) - the observation at time t 9 d; o) m, x5 k7 B7 i
% A - the system matrix 6 ?9 ?7 @% R* C
% C - the observation matrix
( X; u! o3 m2 g* I% Q - the system covariance
3 f/ ]; V( Z7 M/ O' J% R - the observation covariance 7 s. {4 }! t: T% J
% init_x - the initial state (column) vector 1 g- B( f' D: Z. w6 t( Q
% init_V - the initial state covariance ) E, x y4 P4 L
% 8 n8 v8 n1 h& c2 D6 x
% OPTIONAL INPUTS (string/value pairs [default in brackets])
4 l. {( V, j; z$ J% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
( F! u7 e' z* E9 u) I% In this case, all the above matrices take an additional final dimension,
8 l% N( e+ R0 s% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m). $ m% G+ ~, P1 n* o1 b/ Y
% However, init_x and init_V are independent of model(1). * K( ~: L0 k* p
% 'u' - u(:,t) the control signal at time t [ [] ]
8 U, O1 T2 C5 `1 @1 ^4 Q% 'B' - B(:,:,m) the input regression matrix for model m 6 j9 H/ c2 t% m8 Q4 w7 H
% 5 y+ f, \0 t4 A( P# l, p( B! A' b* N
% OUTPUTS (where X is the hidden state being estimated)
8 G0 D2 Q- y% f1 }* Q% x(:,t) = E[X(:,t) | y(:,1:t)]
+ X- c" f; a1 N. o) Z& j7 C; g% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]
2 ] P5 _( I4 K9 |% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2
. I- N' Q( p! p- c% loglik = sum{t=1}^T log P(y(:,t))
7 H0 P, q. T6 X; O0 M, L% 0 a9 C( _0 Y- S) P
% If an input signal is specified, we also condition on it:
2 X- g) ?( e9 Y" Z& I: V1 y% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]
7 t' z Z3 j U% O6 J; a% If a model sequence is specified, we also condition on it:
. b' {" @8 z5 s" `0 F( `' }% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)] % i1 F& ], }( X3 E& L
[os T] = size(y); # s j0 E. {8 [1 N
ss = size(A,1); % size of state space
, i/ E2 K( G/ r# A. Z: M% set default params
6 z q. L! P: X' ?/ R% V- {% q3 pmodel = ones(1,T);
# j& S( `7 k" n+ Fu = []; 7 q$ t3 B4 f. b e
B = []; 6 |/ [2 e. g! F0 |8 W6 b
ndx = [];
2 q2 |9 y( g/ f$ I$ _args = varargin;
) w+ c1 q( j2 B# v+ znargs = length(args); , Q! p& v4 x# i! U7 m4 t
for i=1:2:nargs - `% N$ k9 M1 s ^) d3 `! O
switch args & R" R1 ^, a8 x9 i: N: D6 O8 j
case 'model', model = args{i+1};
4 n$ x8 F$ k1 {; F" s. g0 _+ Ucase 'u', u = args{i+1};
. T6 ~0 [, W* Dcase 'B', B = args{i+1}; ( j; M+ D+ w- N- k$ r
case 'ndx', ndx = args{i+1};
1 M* f+ W' m* }- i/ C `otherwise, error(['unrecognized argument ' args]) 4 f! C# s) @9 R2 `. T
end
/ d9 A7 c; [- m7 C, O# I ` xend
0 Y8 w- v8 Y! T; ]. dx = zeros(ss, T);
! w2 }" |, M) i8 \, M1 x! NV = zeros(ss, ss, T);
$ Z1 p- D) i2 `7 R' {5 `1 q0 HVV = zeros(ss, ss, T);
; F" k( Q" C+ p- vloglik = 0;
5 l( k+ s+ f0 |for t=1:T m = model(t);
, {% J5 ~! s7 t% g; D) o: A) W7 rif t==1 %prevx = init_x(:,m);
4 K5 e4 e. T7 o0 N0 P9 r%prevV = init_V(:,:,m); & I' ]8 V, N5 a+ ~+ X5 r& Z8 _0 l
prevx = init_x; 4 o* \9 H) A6 R$ ]* a( ]
prevV = init_V; 8 H7 K6 V- Z, j* p/ W
initial = 1;
/ U: ~3 Y( N, \else prevx = x(:,t-1); 8 D4 l; ^) U( c1 r' i* i
prevV = V(:,:,t-1);
6 N7 j: o6 k- o, i" zinitial = 0;
$ }: [# f( `6 N( U' @8 gend
3 N R' L w- u7 ~2 ~4 pif isempty(u) $ J7 }( f5 i5 Z( {8 i
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
3 x; T# C8 _8 ]kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial); else 7 K" h6 {' ]$ ^+ Y+ W4 t2 w! b- X
if isempty(ndx) [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
6 p% g0 Y4 k- E2 |6 q+ S kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 'initial', initial, 'u', u(:,t), 'B', B(:,:,m));
$ I% X$ f+ F/ A" Belse
7 T7 |) t2 Z4 L5 oi = ndx; 9 W6 `: ? g# R+ ?
% copy over all elements; only some will get updated x(:,t) = prevx;
1 u- {1 T0 g8 W6 rprevP = inv(prevV); + _9 K/ D+ i9 x1 }, M5 e, j
prevPsmall = prevP(i,i);
. |/ w/ J* {! |8 j7 w: T$ eprevVsmall = inv(prevPsmall);
& g; n% h- O3 C2 M6 H[x(i,t), smallV, LL, VV(i,i,t)] = ... kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ... 'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
% w( B4 O' f) _" b) ~5 l2 L csmallP = inv(smallV);
* r; r8 i$ M+ i3 ZprevP(i,i) = smallP; - W4 t- s: _* V7 @) v. G
V(:,:,t) = inv(prevP); ) O- S# j6 {. ?: g# f! O. h' }/ C
end 0 d6 E. r% M2 R. t; {3 m
end
5 l2 @: Q5 }) {6 X0 q4 ~2 y3 Ploglik = loglik + LL;
- X$ M, N/ v4 S# B: ^- p( Lend |
|