- 在线时间
- 5024 小时
- 最后登录
- 2022-11-28
- 注册时间
- 2009-4-8
- 听众数
- 738
- 收听数
- 1
- 能力
- 23 分
- 体力
- 77163 点
- 威望
- 96 点
- 阅读权限
- 255
- 积分
- 27075
- 相册
- 1
- 日志
- 14
- 记录
- 36
- 帖子
- 4293
- 主题
- 1341
- 精华
- 15
- 分享
- 16
- 好友
- 1975

数学中国总编辑
TA的每日心情 | 衰 2016-11-18 10:46 |
|---|
签到天数: 206 天 [LV.7]常住居民III 超级版主
群组: 2011年第一期数学建模 群组: 第一期sas基础实训课堂 群组: 第二届数模基础实训 群组: 2012第二期MCM/ICM优秀 群组: MCM优秀论文解析专题 |
2#
发表于 2011-11-28 10:48
|只看该作者
|
|邮箱已经成功绑定
matlab下面的kalman滤波程序7 F+ P6 {" U3 c s4 q# M; Z" r4 V c
clear N=200; w(1)=0; 4 I) O! V/ K" s! \- {+ L6 ]+ j
w=randn(1,N) 7 V' q' P/ R! g2 s' j; w
x(1)=0; - B+ g$ Y8 @4 s: V& M$ Y
a=1;
! \, k; O* U9 g" `- V3 afor k=2:N; - L/ B9 g: b2 q) R" u5 n
x(k)=a*x(k-1)+w(k-1);
' {" x. ^3 g* x& Mend % V$ y- g& j2 k. _7 g( Y% |
V=randn(1,N); # C9 f& T/ P; D" v
q1=std(V); 0 X' g4 d1 _9 i$ _, @% L
Rvv=q1.^2;
- ~8 h- X7 c+ i/ _0 c6 N1 _q2=std(x);
+ u$ y6 L1 @( Y; g% A" P& M4 vRxx=q2.^2;
# i. v3 } V- [$ i$ x0 Pq3=std(w);
' J" l; c) ?) p6 j9 |3 [Rww=q3.^2; & m& u- Y& Z4 d, p3 M
c=0.2; $ Y4 l1 [" R2 K6 x0 t7 d
Y=c*x+V; ) }4 Q: ^9 h6 u9 ?0 @
p(1)=0;
$ F& F! n) }: xs(1)=0;* q* V* Q% X6 i1 r
for t=2:N;
1 T2 w' C i0 e- G6 Ip1(t)=a.^2*p(t-1)+Rww; , ]# l. G$ G6 m# N8 t; S; x& A
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
" ?4 E8 M7 R& H7 e9 m3 L# a- cs(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
7 f/ F H. Z: D+ l1 v! G+ ?9 @p(t)=p1(t)-c*b(t)*p1(t);
, D1 }: G. h0 o! y6 oend * T4 b' T* m' ?; N8 G/ W1 e
t=1:N;
]1 f* l) E1 y; m( ^2 Yplot(t,s,'r',t,Y,'g',t,x,'b');
4 A0 D% @6 B# c2 r xfunction [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin)
* [6 [/ s$ }! S% Kalman filter. 4 P/ O; Q* l# }9 k
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...) , x9 w- q8 N9 i5 S( O
% 7 V; [: e! {1 \9 I+ m% A
% INPUTS:
* W/ g- k1 e3 D g8 _$ O: S% y(:,t) - the observation at time t
9 @# `6 P$ G* X! {% A - the system matrix
& J* p- j* O2 V+ ~' r9 J& v. C% C - the observation matrix
6 H7 D" n9 T% q# F+ f+ f% Q - the system covariance 9 @; x* G! m) a9 A1 r5 l$ Y8 g
% R - the observation covariance ! }+ f4 U0 `! e; _) h
% init_x - the initial state (column) vector 2 G7 R: [ P7 o6 N$ T
% init_V - the initial state covariance ' s l2 s, G8 ]% z9 P
% . l' V! O9 P/ B* O
% OPTIONAL INPUTS (string/value pairs [default in brackets])
' t% @: |' u, X% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
/ N' `; J& y, ~( `- v% In this case, all the above matrices take an additional final dimension, + S( l9 Y+ J+ k4 M
% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m). 3 x3 h: T, z% s9 j
% However, init_x and init_V are independent of model(1). + p% \3 Q7 p1 l
% 'u' - u(:,t) the control signal at time t [ [] ] 9 j8 u! G) w8 V
% 'B' - B(:,:,m) the input regression matrix for model m
3 b+ s6 M9 F, l6 h0 L+ s6 u9 J9 M%
& N! K+ T% n9 H2 C% OUTPUTS (where X is the hidden state being estimated)
, k8 P0 e8 c" T% x(:,t) = E[X(:,t) | y(:,1:t)] B! o4 G* [ w1 k
% V(:,:,t) = Cov[X(:,t) | y(:,1:t)] + M1 b1 [2 P4 Y6 t% i
% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2
# W0 r" Y, N+ `' S% loglik = sum{t=1}^T log P(y(:,t))
! _5 ]) a8 C \7 ?0 A% u) o; a7 I8 g' q7 D
% If an input signal is specified, we also condition on it: & d4 F7 [, g6 v: y* w0 Z
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)] 7 s9 D! `0 L5 J7 r5 f! e+ L+ G
% If a model sequence is specified, we also condition on it: ( b7 v* D9 I: |' u
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)] 7 ^( s" F0 t. ]6 P" N g: Q$ w
[os T] = size(y);
/ |+ [3 l h. U/ e# }ss = size(A,1); % size of state space ) {: x* [! K1 f) N9 z
% set default params
- J3 x. [1 O4 B8 Q, cmodel = ones(1,T);
3 J' n' x( f* a% e, n8 cu = []; 5 q( y6 t% W; ~6 N- j8 N# W0 m: d3 e
B = [];
$ P% K$ P- V% bndx = [];
j6 X) s" j$ D! bargs = varargin; 4 ]: M0 u$ q5 S# \; U* k8 X
nargs = length(args);
& l" u9 G9 c; |9 n/ [ bfor i=1:2:nargs ; C/ y' T* `9 G: ~% U5 H
switch args
& L* u' G1 Q5 Y" m. {case 'model', model = args{i+1}; 7 H, m- u8 k* t
case 'u', u = args{i+1}; : b5 d! a5 i4 h `9 u5 t
case 'B', B = args{i+1};
4 g5 R. f+ g; x; B! f9 M+ a8 w: u! Mcase 'ndx', ndx = args{i+1}; ( T. B& S4 Q3 z e* o' Z
otherwise, error(['unrecognized argument ' args]) ! ?# q: ~, P3 Z4 K6 W; f1 L' C
end
, @" O% Z% c" `6 O* Vend + C5 A2 H V3 P) c& M4 s' H
x = zeros(ss, T); 8 b7 a. w! a8 M" }* o) ~' T
V = zeros(ss, ss, T); . M# u/ L* ~. x+ K% x; V
VV = zeros(ss, ss, T);
$ P+ O+ ?5 ?- v! x2 _8 O2 Floglik = 0;
1 {& J; Q$ N& z" P! P+ E+ wfor t=1:T m = model(t); ( d6 N8 j) _# X& b9 t& w
if t==1 %prevx = init_x(:,m); ! p* r; h- @# q+ O" x2 J+ Y$ [
%prevV = init_V(:,:,m);
: l; H* i4 \6 V5 i4 N. fprevx = init_x;
' w; t: V8 f7 j7 _$ BprevV = init_V; ( n/ ?# G P% f! Z
initial = 1; ' o/ ]) |( h. v, h3 T
else prevx = x(:,t-1); 6 \! j3 q6 y5 ]
prevV = V(:,:,t-1);
- I( A3 g# q& b7 l1 g0 M3 tinitial = 0;
( Q" ~# a; c# D! Lend 8 Q' j; i0 n ]! Q
if isempty(u) 6 X& E# u: b+ T, ~1 B1 M3 ?
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... 6 `8 H9 o. [% k& r6 G" ]9 L
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial); else & T9 l$ s( R( |- \2 c2 }$ W: g& }! G8 E
if isempty(ndx) [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
, m; F4 F. H" a" C* P kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 'initial', initial, 'u', u(:,t), 'B', B(:,:,m)); ) v, Y% q) y' E# \9 \$ n/ h
else F( }8 B; s" w3 O! I
i = ndx;
" ?7 I/ H/ [/ y( B6 @4 C0 t% copy over all elements; only some will get updated x(:,t) = prevx;
- t' Y4 A& `0 [ J [! P0 L1 kprevP = inv(prevV); - P5 u6 M I! Y2 u2 R
prevPsmall = prevP(i,i); , ^ k: C9 T1 Q3 u5 K6 f) d) y
prevVsmall = inv(prevPsmall);
3 S0 i x) x6 _8 |% D[x(i,t), smallV, LL, VV(i,i,t)] = ... kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ... 'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
: E3 ~+ b" s- f5 B E7 ysmallP = inv(smallV); ! ?" @1 |) ]1 H: k# v( z
prevP(i,i) = smallP;
+ n) R3 ^) X9 r5 j; vV(:,:,t) = inv(prevP);
) u# g8 }; @% [0 |* X8 d5 Y( Cend
/ a6 N$ P3 I5 a2 i& @) ?" Kend p4 q7 { g3 K( a: x: n
loglik = loglik + LL; 7 q. A9 W/ Z( U4 r' p
end |
|