- 在线时间
- 5024 小时
- 最后登录
- 2022-11-28
- 注册时间
- 2009-4-8
- 听众数
- 738
- 收听数
- 1
- 能力
- 23 分
- 体力
- 76990 点
- 威望
- 96 点
- 阅读权限
- 255
- 积分
- 27023
- 相册
- 1
- 日志
- 14
- 记录
- 36
- 帖子
- 4293
- 主题
- 1341
- 精华
- 15
- 分享
- 16
- 好友
- 1975

数学中国总编辑
TA的每日心情 | 衰 2016-11-18 10:46 |
---|
签到天数: 206 天 [LV.7]常住居民III 超级版主
群组: 2011年第一期数学建模 群组: 第一期sas基础实训课堂 群组: 第二届数模基础实训 群组: 2012第二期MCM/ICM优秀 群组: MCM优秀论文解析专题 |
2#
发表于 2011-11-28 10:48
|只看该作者
|
|邮箱已经成功绑定
matlab下面的kalman滤波程序
- h3 [$ k* `( u! m+ m) x3 Wclear N=200; w(1)=0;
+ ~) n$ |9 }( _# A; O8 q+ b6 sw=randn(1,N)
8 H" s6 P" Q' C+ Yx(1)=0;
3 w3 s e7 v; c/ va=1; ' x, e m8 J1 S& K6 Z; w
for k=2:N; ; v6 g/ o. ^& t6 l6 q' }
x(k)=a*x(k-1)+w(k-1); 5 i# _$ k7 \( z3 Z' R
end . w: K( W. d8 F; \: k
V=randn(1,N); : W. J9 A4 ~6 v. L$ k
q1=std(V); ) c. s9 E7 \8 W" k
Rvv=q1.^2; 8 b6 E, U" i0 p5 T7 c/ u
q2=std(x);
' P: q& O- H: {- x7 ZRxx=q2.^2; ! Z# _+ F" | }! i" w0 X
q3=std(w); ' ~5 |! e5 _, e% J* H
Rww=q3.^2; + e7 Z7 I- n- o
c=0.2; 1 _! B; W$ Q/ @% e4 a. _
Y=c*x+V; . K8 l' d( ]+ Z# _5 l9 c8 N
p(1)=0; 0 w4 K5 M" T+ X" h! O
s(1)=0;& m, A" Z2 L9 x6 M$ j, \9 O% \
for t=2:N; 7 }* u7 Z8 ~1 Y1 j# e8 j
p1(t)=a.^2*p(t-1)+Rww; 3 q [; y) W6 C" b
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
3 [$ f' e. M1 l! [s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1)); 3 |- e$ \* v6 H. Z- x/ {0 b
p(t)=p1(t)-c*b(t)*p1(t); - M% c( [1 x+ ~( { v( S7 T
end
/ Y( k1 x+ ` U1 n2 {9 gt=1:N; , n @7 I8 \' E! S& E
plot(t,s,'r',t,Y,'g',t,x,'b');
# w% I" A0 i1 H( ]8 tfunction [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin) 2 {4 l! \$ c2 }% d: E) _0 e
% Kalman filter. / ^1 q; G) j8 n" i, t( Q; F
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...)
e9 y0 \1 U7 ~% g$ j8 x- p+ ~5 Q% , N2 m% b# c+ O: Z% ^, O
% INPUTS: , ~5 T7 u$ o; w7 Y5 h5 a# y) ^% y; M8 b
% y(:,t) - the observation at time t & E, {$ c1 n0 u% Z- M
% A - the system matrix
( g3 [% a) o9 Q% C - the observation matrix 3 |6 n0 m# P3 h9 b4 @% c& I' i% s
% Q - the system covariance
% R, S! R X8 |, j% R - the observation covariance
/ J' i7 |9 W: c. h5 `% init_x - the initial state (column) vector
! c- Z9 V# a0 T. ?* S% init_V - the initial state covariance 3 u$ _+ G) }. s) g0 C
% $ v( a2 r- t4 A p. z* I1 I/ C' X
% OPTIONAL INPUTS (string/value pairs [default in brackets])
9 v! Z$ ~2 G8 S& b0 s7 W$ X$ R8 j% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
% m: @; d1 [ I& c% In this case, all the above matrices take an additional final dimension, ' e- U6 |/ V7 a% u5 L# I3 G; V
% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m).
3 Q5 O' c/ _8 u4 [9 X+ D% However, init_x and init_V are independent of model(1). 3 o* Q3 G. \- `; [0 s
% 'u' - u(:,t) the control signal at time t [ [] ] 1 C& S( q' \/ r/ m8 l+ W. E. [
% 'B' - B(:,:,m) the input regression matrix for model m
7 \* Y% ]1 o: j+ D% * [- g: f% i: A2 S: `
% OUTPUTS (where X is the hidden state being estimated) 8 [% d: D6 l4 x4 F
% x(:,t) = E[X(:,t) | y(:,1:t)]
2 E/ l3 ~$ @$ P8 L% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]
. s! E& ~0 d! j5 v% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2
& i) I- e9 N+ ?( ^+ S% V7 U/ X/ r% loglik = sum{t=1}^T log P(y(:,t))
* Y0 ?4 M! p; O/ x! P% U%
- S, R% k( ]6 @) e0 f% If an input signal is specified, we also condition on it: + q& |9 o3 R: f
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)] ) |5 p9 a, {9 b( @
% If a model sequence is specified, we also condition on it:
/ W$ i6 h& s) m* H2 ~% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]
& u0 K+ P: N) M, h" {3 c[os T] = size(y);
9 b% r, b. ^4 ?" nss = size(A,1); % size of state space - f3 s3 r& W$ {: n
% set default params 5 R$ i/ f7 |) W2 v; J( G
model = ones(1,T);
/ D, J* h$ `, J7 \) ju = [];
0 z/ b6 p0 c! @3 ^, tB = []; 7 m; ^* t- n% q: O1 I
ndx = [];
" [2 ]! w7 _. {3 s" jargs = varargin; 4 d" ]: h; ]- ]9 n' l& m' V
nargs = length(args); 4 |3 c4 Q! _$ Z* ]0 }; q
for i=1:2:nargs # |( v. c1 w% W2 n, e6 M2 N
switch args
6 c q9 ` w. l! ^case 'model', model = args{i+1};
$ U0 p r$ _7 j/ \* Z% C1 m2 Lcase 'u', u = args{i+1}; 6 |! l. g, h/ R9 F
case 'B', B = args{i+1}; # _; s: A& L8 l; \, |
case 'ndx', ndx = args{i+1};
8 S# ]+ S6 `. P4 i7 jotherwise, error(['unrecognized argument ' args]) 1 B" q D v; M% p- i9 h h" o/ F
end
- ]/ w9 F2 g$ b1 A2 K5 g/ X) lend
# @" _; [2 Y, N+ e0 Hx = zeros(ss, T); : p0 p* s; Z+ O/ B |
V = zeros(ss, ss, T);
, B: W( B) `4 m' C }VV = zeros(ss, ss, T);
i" d; {3 O* Q; lloglik = 0;
0 b* B [' z. tfor t=1:T m = model(t); , |/ j$ w" Y) ]5 i- Q
if t==1 %prevx = init_x(:,m); 0 c, A: j; H9 Z# u# c# f4 `
%prevV = init_V(:,:,m);
`" s4 f9 v& m. ` J0 S( w; lprevx = init_x; q! c5 K$ Y6 b* X, `; n; `
prevV = init_V; ; s* o, Y' r2 b
initial = 1;
' v8 D+ |8 E8 t# G( z, T% L) L! @else prevx = x(:,t-1);
0 y* V! l7 @- w; T) aprevV = V(:,:,t-1);
# [( l: H4 S/ g% G2 p4 pinitial = 0;
V) t1 M" l* `$ v& I- Mend
3 e/ c9 l1 k6 P: m0 S. u& Lif isempty(u) ' q+ x) b* n3 s' h4 Q" r
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ... N$ Y+ U5 c# t
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial); else
/ U# L" T ?6 D. h* D/ @ if isempty(ndx) [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
& z6 h( w% S" P kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 'initial', initial, 'u', u(:,t), 'B', B(:,:,m)); + x2 f3 G6 U( o$ v. N/ \& t' J9 W
else ; m; r! a; T6 Z1 u# j' w. K8 ^
i = ndx; " i5 O9 Z. x; U1 y
% copy over all elements; only some will get updated x(:,t) = prevx; / W4 T- `* V' P8 g
prevP = inv(prevV);
4 Z( ]' r& M5 a$ Y! m4 t3 oprevPsmall = prevP(i,i);
6 v+ E, x; V+ s( r, s% P6 fprevVsmall = inv(prevPsmall);
( u7 S+ O8 n, E R7 }3 _2 g) x[x(i,t), smallV, LL, VV(i,i,t)] = ... kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ... 'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
8 f Y" q+ @9 D' `6 AsmallP = inv(smallV);
+ F! I; L& W! T% D2 v P9 XprevP(i,i) = smallP;
. @6 I2 N8 |) x' M. fV(:,:,t) = inv(prevP);
+ Q" u* e- Y! `7 Lend
5 o9 V4 z5 x$ O& w% xend 1 j3 \) z3 v. A7 P( p$ C% q
loglik = loglik + LL;
: [4 j0 x8 Z$ e+ `$ |end |
|