QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2422|回复: 6
打印 上一主题 下一主题

[问题求助] 想请教一下退火算法名字的由来

[复制链接]
字体大小: 正常 放大

11

主题

7

听众

258

积分

升级  79%

  • TA的每日心情
    开心
    2016-7-9 21:23
  • 签到天数: 53 天

    [LV.5]常住居民I

    自我介绍
    喜欢数学,从开始到现在

    群组Matlab讨论组

    群组MCM优秀论文解析专题

    群组沈阳理工应用技术学院

    跳转到指定楼层
    1#
    发表于 2012-7-14 14:02 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    RT,为什么要叫退火算法呢?
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信

    11

    主题

    7

    听众

    258

    积分

    升级  79%

  • TA的每日心情
    开心
    2016-7-9 21:23
  • 签到天数: 53 天

    [LV.5]常住居民I

    自我介绍
    喜欢数学,从开始到现在

    群组Matlab讨论组

    群组MCM优秀论文解析专题

    群组沈阳理工应用技术学院

    回复

    使用道具 举报

    14

    主题

    6

    听众

    239

    积分

    升级  69.5%

  • TA的每日心情
    擦汗
    2012-2-1 13:24
  • 签到天数: 1 天

    [LV.1]初来乍到

    群组华中科技大学

    群组Matlab讨论组

    回复

    使用道具 举报

    11

    主题

    7

    听众

    258

    积分

    升级  79%

  • TA的每日心情
    开心
    2016-7-9 21:23
  • 签到天数: 53 天

    [LV.5]常住居民I

    自我介绍
    喜欢数学,从开始到现在

    群组Matlab讨论组

    群组MCM优秀论文解析专题

    群组沈阳理工应用技术学院

    heshuangping 发表于 2012-7-14 14:47
    ' u" u. y8 e; }& |$ [7 O/ M模拟物质退火的热力学原理

    + L; t$ i4 ~8 f3 z, r2 S哦  谢谢你的解释
    回复

    使用道具 举报

    0

    主题

    5

    听众

    86

    积分

    升级  85.26%

  • TA的每日心情
    郁闷
    2012-8-28 20:11
  • 签到天数: 14 天

    [LV.3]偶尔看看II

    自我介绍
    学生

    群组数学建模培训课堂1

    模拟退火算法2 G5 \% o# N- _) n: w# _* j# w  C# w( J- H' b
      模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 9 W! @" Z/ ~1 s, k6 ^7 a6 u* m
    7 s" S9 x  @$ U8 n+ i3.5.1 模拟退火算法的模型/ g5 u" v& n1 |% W0 A, O1 D# J
    - O* H+ {+ z8 a/ E8 a8 C! \) k2 X  模拟退火算法可以分解为解空间、目标函数和初始解三部分。' J* p4 W6 D' ?. ~# S( H: o& P
    8 Y* ]( z& ?" g( N' x7 I! { 模拟退火的基本思想:
    " E8 W& F( ?; k5 a5 R. k6 P2 G# I; A- p0 ^4 a2 f' \& J  (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L. i+ B; Z4 y! a$ A9 ^
    ) `, L0 L9 A* `  (2) 对k=1,……,L做第(3)至第6步:5 k/ C) b8 v$ M( H$ o/ M
    5 ^. e+ C6 X1 k) o  (3) 产生新解S′+ V. H, q. V( W8 R% e
    , T! P2 L/ B5 {+ t; F  (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数7 q) ?% o# @- [3 `+ r0 Z. [3 s% d* Q
      (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.2 w0 ]" G! x. w' z2 F$ x3 C# A' r2 d
    1 |6 W0 n8 U% ^1 ~, O7 Q  (6) 如果满足终止条件则输出当前解作为最优解,结束程序。, P( r  r9 F+ o, b, U
    . Z6 H- }9 I' p+ v- O- @' I- O3 @  G终止条件通常取为连续若干个新解都没有被接受时终止算法。" e( a6 a0 V# f$ c
    # ^5 m* l: [6 {; W, n  (7) T逐渐减少,且T->0,然后转第2步。
    5 Z% \+ _$ U8 D6 O3 G# |0 z! g5 d! g% l算法对应动态演示图:
    ! g  Z5 b% K; ]8 f( `2 |+ g. _5 W5 ~0 n5 N模拟退火算法新解的产生和接受可分为如下四个步骤:
    8 N; j! Z$ x+ P$ g, K4 t% V4 {/ Q/ a& j4 b9 X1 h4 a0 }. s3 d  第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
    5 G- H# w1 y; u% o5 A, @& a# V* m, a1 Z# \  第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。& X& ?' L4 |/ X1 o- U0 N6 X0 \
    " }5 N% |/ c9 ]+ W  第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
    - e0 S) E3 z  O% g. D2 {: C/ M  B$ g* z. H3 P8 m/ q% o1 e# b, ^  第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。" u: {8 u7 }* Z+ x
    + G$ p% _% c  ]) m1 l* ^" m1 R( c  模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。
    7 F+ E% j9 ?& n* d' @: `: ^( R' P# L# R$ ?0 `$ v7 K  s. F) P5 O8 Z: G: i' Y6 B6 z1 ]2 |9 ~  I
    3 b1 w/ A! [/ D. y- j- h5 C, Q8 \: k% C# U+ u
    ' ]# ]6 `1 _: x4 _, F  i4 a模拟退火算法的简单应用# }, M' F4 ]6 C
    9 ^. ?" x" ^, k4 h6 H+ N/ z" F# T  作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。城市i和城市j之间的距离为d(i,j) i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。3 x: A- D* ], o9 t) K# T& g: T7 K5 A4 z$ f2 k6 k3 V
      求解TSP的模拟退火算法模型可描述如下:3 Z7 Y2 S* u4 T+ y) k  v6 m) z( x1 X! P
      解空间 解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。初始解可选为(1,……,n)6 H, G3 X) V- K. c8 C) j. K8 a  ^( l# `# r' [0 G/ P( \
      目标函数 此时的目标函数即为访问所有城市的路径总长度或称为代价函数: / a9 W+ V% w: i! t$ i6 |5 A+ @. w
    1 Q8 T7 a/ E' }2 o
    # c* A$ s  A. i  W+ E; d: Y7 r, u/ I  我们要求此代价函数的最小值。/ S" M: G9 r3 H- X: x1 y! L# d8 ]4 B7 t2 ]% t
      新解的产生 随机产生1和n之间的两相异数k和m,若k<m,则将- Z( m' |( v9 s& J. m! @  E1 D; w7 E) |' }
      (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)
    : F% r7 `1 f! H# J! l$ u  ?9 x* l# B3 A* ^) t  变为:
    4 I* X2 S# l9 G/ ^3 ]6 W5 {# \8 t/ x" k  (w1, w2 ,…,wm , wm-1 ,…,wk+1 , wk ,…,wn).
    ( o8 J9 g! o7 p) X+ X0 I4 L$ b! _1 q+ _# K# q* Y/ j  如果是k>m,则将7 d6 u5 L. `4 R4 l" b* j6 g
    1 K* _+ R' K9 [  (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)
    " j. b. f/ L* G. i% @! p9 B, b+ G1 L7 Z' E0 x8 T  变为:4 m1 x: ^& B  p3 y$ O/ g  Y( ]4 B
      (wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).4 M4 Z2 x4 _* s/ A
    - E4 V1 `: S% h. [% \  上述变换方法可简单说成是“逆转中间或者逆转两端”。# a5 w9 Y' w$ l  u4 e
    , t1 p: S) x" ^5 S" H0 p  也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。 9 ^* H# ^: X. W
    3 z1 ?: Z. ]& [) R: u  ]( O; P* N0 y+ E  代价函数差 设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为: ) z1 h( z# \! K  X+ v9 K
    8 Y4 C- @+ A, }7 J1 `) z( T* O+ _& Z6 P! J9 Q( H8 O# x5 i8 K
    根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:
    / D; s' P3 z+ ]$ Y& l2 Z, Y# i1 [/ h5 nProcedure TSPSA:
      Y7 ?( [+ ?5 Q" @& Z* G1 ~& t: o( c4 h' Z; B begin ) C; Y% B8 j9 z( c+ u
    # B6 y# T( i7 L7 M1 x3 G) A3 q' B" O  init-of-T; { T为初始温度}
    9 V! r7 q4 L4 u8 w$ f) }! e2 u1 R# j" t$ }6 T5 z$ X6 t  S={1,……,n}; {S为初始值}3 x& |8 ]' T) W2 ~# Z" r8 c* ?9 P& c4 u
      termination=false;) Y6 {' e, T$ _% t/ x4 f
    # D, Z  y* Q  ?6 u: k  while termination=false" z( G: E& ~4 v: U; o) O) k+ y' w: `) G' w* y" ~
       begin
    5 p" Z7 y, }& H7 w/ `- _" u/ T( s' ?, n    for i=1 to L do
    % u( j6 \1 C5 s) q8 c+ Y5 J% |" B9 M2 f      begin/ \! e* d1 @' _3 I1 s; v, E) T/ T2 a" L6 g/ I2 M4 W
            generate(S′form S); { 从当前回路S产生新回路S′}  r1 m* D# I1 G% q  S* |; O6 j9 L' c! C7 J5 V
            Δt:=f(S′))-f(S);{f(S)为路径总长}, z% `9 E: f/ Q7 I
    " w# x" P* `; P3 @1 Y        IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])9 b+ p9 O3 I- |7 F5 Z* ]$ p
    & t$ s) J' K" ?' R3 e/ n        S=S′;0 ^# X1 H7 G6 A2 @' i2 K. T' ^; h# r! [1 F
            IF the-halt-condition-is-TRUE THEN
    ) \3 V9 g2 p" b# z9 G2 T7 b8 c/ ~& s, L  o( |        termination=true;/ X- M/ Z1 n  N$ R0 m! ~
    4 X6 c/ H% ?3 `  Q1 O2 f- z  n      End;
    3 u- n. P, W/ V3 X! ^: C1 z' h$ Y3 ]) Y' C+ K! c+ N8 L1 J) }    T_lower;0 c: H# C) Z& e3 z6 o" k+ }
    . y1 X4 p; t6 J9 x4 q; `( ~/ r   End;/ e9 x3 f9 f: I! h: L1 e
    4 Q6 E0 l; _  J3 u% s) g End0 P% t" g1 ]! ?# t% @1 F, I+ F5 u( w
    3 J+ ]' `" f& @* z2 e, z& P9 Q  模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem)等等。! x  R8 i% z6 n" {  b+ `
    7 [8 t, s( t4 H6 ~4 ]& }0 ~! U& q- h1 o4 A- G% T2 J
      i9 U7 z# D9 K1 y2 u6 Y' X  T1 e+ M4 N) H, I
    , i$ F* g3 b4 D$ b8 z# [1 u. L9 Y模拟退火算法的参数控制问题5 h( i6 \8 j5 ]' p$ q& b3 \/ `& I
      模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:" |) u) Q# l$ b$ n! O" D# _
    . s; ^. G$ `/ {" j, [  (1) 温度T的初始值设置问题。/ Y( x9 w" P+ W5 s  H0 A  {0 E' H6 u; r
      温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。$ S/ G! ?) z9 j+ a% W& o
    / o8 o4 Q. O4 Y6 E9 k# U8 Y% Z3 x  (2) 退火速度问题。, C2 i+ V" T+ M( z( Q8 r- z# z/ u
      模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。) w9 X0 D% D$ m0 Z( k" N5 W4 i" ~: _& @
    / L  Q3 \# f2 m+ N& J  (3) 温度管理问题。
    + t: o, f  n7 C$ j' F' m& Y4 B: H9 w5 q) r; i  温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:+ h- p! D8 Y' c- X  w: E
    & X, a4 _0 K( Z! E1 v. D3 P- L0 [4 e5 o5 w  J! ^& o  s/ A2 B) V
    T(t+1)=k×T(t)% Z6 r' y( Y/ D& T% m3 H: e- X
    2 d% l* J- e2 B/ [& h3 V式中k为正的略小于1.00的常数,t为降温的次数。

    点评

    darker50  从别的论坛复制过来的,整理下吧,各种乱码啊!!  发表于 2012-8-6 09:27
    回复

    使用道具 举报

    11

    主题

    7

    听众

    258

    积分

    升级  79%

  • TA的每日心情
    开心
    2016-7-9 21:23
  • 签到天数: 53 天

    [LV.5]常住居民I

    自我介绍
    喜欢数学,从开始到现在

    群组Matlab讨论组

    群组MCM优秀论文解析专题

    群组沈阳理工应用技术学院

    梦天涯M 发表于 2012-8-5 12:05
    - b5 b# n1 K  f( n9 ~模拟退火算法2 G5 \% o# N- _) n: w# _* j# w' P1 q, r' |) s, @* N5 a
      模拟退火算法来源于固体退火原理,将固体加温至充分高, ...
    3 m" J2 [, k1 T! h
    这是什么?
    回复

    使用道具 举报

    18

    主题

    7

    听众

    48

    积分

    升级  45.26%

  • TA的每日心情
    慵懒
    2013-4-5 11:26
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    楼主的帖子怎么样?赶紧试试这里的快速回复给楼主 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,点评论吧
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-5-14 15:42 , Processed in 0.696555 second(s), 88 queries .

    回顶部