- 在线时间
- 16 小时
- 最后登录
- 2012-10-19
- 注册时间
- 2012-7-17
- 听众数
- 5
- 收听数
- 0
- 能力
- 0 分
- 体力
- 153 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 86
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 78
- 主题
- 0
- 精华
- 0
- 分享
- 0
- 好友
- 6
升级   85.26% TA的每日心情 | 郁闷 2012-8-28 20:11 |
|---|
签到天数: 14 天 [LV.3]偶尔看看II
- 自我介绍
- 学生
群组: 数学建模培训课堂1 |
模拟退火算法2 G5 \% o# N- _) n: w# _* j# w3 J+ O4 |3 R3 g0 B: B& H% u' _1 `
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 9 W! @" Z/ ~1 s, k6 ^7 a6 u* m3 O% Z; |: w$ ^! Q: G8 W7 T
3.5.1 模拟退火算法的模型/ g5 u" v& n1 |% W0 A, O1 D# J8 ^4 l# s) R ^" H% M
模拟退火算法可以分解为解空间、目标函数和初始解三部分。
M6 U3 L9 H/ ]' H7 A8 Y* ]( z& ?" g( N' x7 I! { 模拟退火的基本思想:
4 @7 {, R- O; I/ a+ b/ w# I; A- p0 ^4 a2 f' \& J (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L5 ~# O- l; p5 B7 `: s$ \) D
) `, L0 L9 A* ` (2) 对k=1,……,L做第(3)至第6步:. h: l7 V7 o3 e% m+ U
5 ^. e+ C6 X1 k) o (3) 产生新解S′+ V. H, q. V( W8 R% e
! ^- h# Z% }3 ^5 t2 J Y% w (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数7 q) ?% o# @- [3 `% [2 ?/ j, y4 F% ~2 F" B K
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.) k3 Y. r3 Z& H0 l) x- O
1 |6 W0 n8 U% ^1 ~, O7 Q (6) 如果满足终止条件则输出当前解作为最优解,结束程序。, P( r r9 F+ o, b, U
% Y1 `5 Y1 x! x- T终止条件通常取为连续若干个新解都没有被接受时终止算法。7 |! b1 {0 q5 O" O# Z' f% _
# ^5 m* l: [6 {; W, n (7) T逐渐减少,且T->0,然后转第2步。
# G* ?( {* o$ `* b# |0 z! g5 d! g% l算法对应动态演示图:
4 Y4 t4 d! |) b9 i9 [+ P: `0 ~. g+ g. _5 W5 ~0 n5 N模拟退火算法新解的产生和接受可分为如下四个步骤: M0 ^ w5 n3 p1 z, h1 {' O9 v& }7 ]
4 {/ Q/ a& j4 b9 X1 h4 a0 }. s3 d 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
1 U) N$ F( b' W" g+ L4 W& }1 [, @& a# V* m, a1 Z# \ 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。, g. k! k- V7 C" l. g8 M
" }5 N% |/ c9 ]+ W 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
% u$ Q' x2 e) K) Q, q, D$ g B$ g* z. H3 P8 m/ q% o1 e# b, ^ 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。" u: {8 u7 }* Z+ x
, ]" u' Z4 U+ e6 G8 v0 i 模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。, Z, m% v/ a1 @9 R, W6 o% g( V) I
( R' P# L# R$ ?0 `$ v7 K s. F) P5 O8 Z
& r- T3 Q* y, @* y Z3 b1 w/ A! [/ D. y- j- h5 C, Q8 \: k% C# U+ u
" N3 t' t7 Q0 y: V$ Y模拟退火算法的简单应用% ?/ k3 f) U# g& M# `& Y" }. l
9 ^. ?" x" ^, k4 h6 H+ N/ z" F# T 作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。城市i和城市j之间的距离为d(i,j) i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。3 x: A- D* ], o9 t) K# T& g7 m" y2 `6 ` f8 \5 ?" y" p l' S
求解TSP的模拟退火算法模型可描述如下:3 Z7 Y2 S* u4 T+ y
( K5 J @8 S# B. v( }3 W 解空间 解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。初始解可选为(1,……,n)6 H, G3 X) V- K. c8 C
& `7 X+ L: V; Q# v+ W* k 目标函数 此时的目标函数即为访问所有城市的路径总长度或称为代价函数: / a9 W+ V% w: i! t$ i6 |5 A+ @. w6 ?4 P6 u6 b4 e$ q$ I
( p: M A* S2 n) c# V# }% D- v
+ E; d: Y7 r, u/ I 我们要求此代价函数的最小值。/ S" M: G9 r3 H- X: x
0 C" M( L+ s0 d0 J7 x0 K* @' | 新解的产生 随机产生1和n之间的两相异数k和m,若k<m,则将- Z( m' |( v9 s& J. m! @
! F. ~& n2 @& x9 u (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)8 B8 A. q: |6 F4 D
?9 x* l# B3 A* ^) t 变为:
! h) ^) I* c/ q' k8 K, V+ a/ ^3 ]6 W5 {# \8 t/ x" k (w1, w2 ,…,wm , wm-1 ,…,wk+1 , wk ,…,wn).
' Z- F* H. D {! [2 L4 L$ b! _1 q+ _# K# q* Y/ j 如果是k>m,则将7 d6 u5 L. `4 R4 l" b* j6 g
0 S. M, Z; V b; d% F* \ (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)
$ R3 s4 G3 Z2 d: r9 C$ O: x, b+ G1 L7 Z' E0 x8 T 变为:4 m1 x: ^& B p3 y
- k4 l5 x4 `+ C7 G" j% E (wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).4 M4 Z2 x4 _* s/ A) |! L* u6 J( m/ I7 r7 Z6 `$ A
上述变换方法可简单说成是“逆转中间或者逆转两端”。# a5 w9 Y' w$ l u4 e
+ A1 ^1 T2 r0 ~$ J 也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。 9 ^* H# ^: X. W
# ?; G+ e* X, s# o1 H- ~ 代价函数差 设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为: ) z1 h( z# \! K X+ v9 K( J- A* Z9 H( X9 q2 G
7 J1 `) z( T* O+ _& Z1 A5 S0 j h& F" o* J0 I- |8 \; R
根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:
' f* D1 }* P, a. a2 J& l2 Z, Y# i1 [/ h5 nProcedure TSPSA:
( f5 B. r1 t) W' O8 v/ q1 ^: v. X4 N: o( c4 h' Z; B begin ) C; Y% B8 j9 z( c+ u
% `7 L# G' Q- K- A+ H9 F/ I init-of-T; { T为初始温度}2 W+ u" e3 ^# J9 p) P" n
2 u1 R# j" t$ }6 T5 z$ X6 t S={1,……,n}; {S为初始值}3 x& |8 ]' T) W2 ~# Z4 X; D* J7 ^4 C& D
termination=false;) Y6 {' e, T$ _% t/ x4 f: L2 Y! d/ A9 U/ x# \: ^) u; ?
while termination=false" z( G: E& ~4 v: U; o) O4 z8 ~' D6 d" `1 D u8 O2 }0 a5 |
begin
# G2 C3 m: ?- L2 a f7 w/ `- _" u/ T( s' ?, n for i=1 to L do; a: j i: y4 R) C2 J- z; E$ q
8 c+ Y5 J% |" B9 M2 f begin/ \! e* d1 @' _3 I1 s, d5 U. O+ S3 l3 _
generate(S′form S); { 从当前回路S产生新回路S′} r1 m* D# I1 G% q S
/ W! t2 H. w+ l- w0 E8 g1 ]/ k n Δt:=f(S′))-f(S);{f(S)为路径总长}, z% `9 E: f/ Q7 I
2 \! a% x0 P6 M* b5 T- d IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])9 b+ p9 O3 I- |7 F5 Z* ]$ p
" t9 n' A, S3 J6 d5 Z& j& m5 A& a/ V S=S′;0 ^# X1 H7 G6 A2 @' i
% I; V" C! Z. K# o) _/ a- } IF the-halt-condition-is-TRUE THEN ! ^! p- r* M0 f$ m
9 G2 T7 b8 c/ ~& s, L o( | termination=true;
, O7 D+ [" O% m" U! { p' ^7 H4 X6 c/ H% ?3 ` Q1 O2 f- z n End;
+ f- e$ m8 b. Y, ?' C+ K! c+ N8 L1 J) } T_lower;0 c: H# C) Z& e3 z6 o" k+ }
. V* d1 A) f- t! R% I+ _% N' j End;! |7 r5 d: T. M/ r8 M
4 Q6 E0 l; _ J3 u% s) g End
@) L3 u9 Q) u! o1 m8 D3 J+ ]' `" f& @* z2 e, z& P9 Q 模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem)等等。
. W/ K9 d% B+ d' i7 [8 t, s( t4 H6 ~4 ]& }0 ~! U, g+ u5 H ^4 g7 h6 b
i9 U7 z# D9 K1 y2 u6 Y' X T1 e+ M4 N) H, I
3 w R$ f$ o- S, Y( q) q模拟退火算法的参数控制问题5 h( i6 \8 j5 ]7 A" K3 j. c' {% r+ f
模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:" |) u) Q# l$ b$ n! O" D# _
# w. H) A* H0 `- T (1) 温度T的初始值设置问题。/ Y( x9 w" P+ W5 s H0 A) H3 P1 H0 p/ w) \ E: e7 T
温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。$ S/ G! ?) z9 j+ a% W& o2 @9 C+ e1 r! Y' }8 x
(2) 退火速度问题。, C2 i+ V" T+ M( z2 |% m( J/ u3 I# A# \1 b. y
模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。+ V N1 p& F I4 v: Q1 Y
/ L Q3 \# f2 m+ N& J (3) 温度管理问题。1 ]# ^; _4 g5 b* X' P5 R
& Y4 B: H9 w5 q) r; i 温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:+ h- p! D8 Y' c- X w: E: x* B* F: m8 [; U
1 v. D3 P- L0 [4 e5 o5 w J3 g6 u1 u2 {3 l- C7 s
T(t+1)=k×T(t)
+ y( R3 Z6 G6 Q4 S, g" g2 |; U2 d% l* J- e2 B/ [& h3 V式中k为正的略小于1.00的常数,t为降温的次数。 |
|