Pronunciation of mathematical expressions ( E3 B2 {7 \# k8 a( o9 `The pronunciations of the most common mathematical expressions are given in the list% K5 `# D8 d/ S4 Q: Q/ F
below. In general, the shortest versions are preferred (unless greater precision is necessary).) c: E# k y$ Z
1. Logic 2 k: ^+ M, V' ?, G9 there exists & {+ [- H# C& Y8 for all3 k9 m( x* t7 z- s c
p ) q p implies q / if p, then q 0 A7 Y4 Q9 O l* T4 H2 Zp , q p if and only if q /p is equivalent to q / p and q are equivalent ) `* l6 P/ U& `- ?1 X/ M2. Sets 2 M! }, [; b3 [+ ?2 @0 w9 L$ Ax 2 A x belongs to A / x is an element (or a member) of A/ |5 i! `& m, ?: {( D8 w$ v
x =2 A x does not belong to A / x is not an element (or a member) of A; W1 s) C' ]6 A+ [8 B \( R# c
A ½ B A is contained in B / A is a subset of B/ t, N/ G1 H# N
A ¾ B A contains B / B is a subset of A ; k, m0 T* y5 W" Z+ S- LA \ B A cap B / A meet B / A intersection B 9 v, S( M, Q( Y6 R) c7 `9 YA [ B A cup B / A join B / A union B- R7 Q2 y- s. W" m
A n B A minus B / the di®erence between A and B8 E2 h$ l3 o2 I! {
A £ B A cross B / the cartesian product of A and B ' m0 g! t) |% @4 R8 `3. Real numbers2 E" m0 @& h4 {# `
x + 1 x plus one : n5 V9 R X/ d1 ^% V' Ix ¡ 1 x minus one) F* c d( x- t! w: a' Y4 @
x § 1 x plus or minus one( M, M7 |" g+ B. B+ T* K2 J
xy xy / x multiplied by y$ f7 e$ W3 l/ w1 J& |& ]
(x ¡ y)(x + y) x minus y, x plus y4 E6 |. }! t6 s8 B: Z( d
x 2 w1 t2 L& ]9 t0 |; ny3 m; n( m) Z q
x over y7 V) Z8 C+ C' x# [8 W% u! a
= the equals sign ! s1 K2 n2 W; T* h Ux = 5 x equals 5 / x is equal to 5 ! v) {, G0 D0 J7 |! ]x 6= 5 x (is) not equal to 5 - W0 e; {; W5 Z) i7 Z4 g0 D1 7 u2 \7 L2 n# _+ {; a4 f, d3 t0 |x ´ y x is equivalent to (or identical with) y7 k5 F8 l) h9 s: N4 H
x 6´ y x is not equivalent to (or identical with) y 7 K2 ^) F+ R6 I% b7 L& ^! xx > y x is greater than y % ]7 u3 j/ Q! U& W) E. q4 Qx ¸ y x is greater than or equal to y. t- U+ k) t1 ^
x < y x is less than y7 c" p7 t7 u4 W* A3 i
x · y x is less than or equal to y 7 M0 K6 R) Q F- f. g3 V) A5 A0 < x < 1 zero is less than x is less than 1 ! k0 d! Y0 c: \' u8 R) s' b/ I' ]0 · x · 1 zero is less than or equal to x is less than or equal to 1 9 k+ H) u& }- jjxj mod x / modulus x 1 J. W: Q$ i& K Q( Vx2 x squared / x (raised) to the power 2 8 ` h6 l* L' O. f j& gx3 x cubed $ V/ Z; t. C6 A# C9 A7 _4 ]3 k" ~x4 x to the fourth / x to the power four( C( W7 y- Y3 n: @4 t1 w' O, C4 n" W0 F
xn x to the nth / x to the power n& |# J( `1 O3 \( u0 E
x¡n x to the (power) minus n " h) v4 T, ]% S( Y3 ppx (square) root x / the square root of x : j& d- A" {1 N' D2 Dp3 x cube root (of) x / K. r8 I0 b8 }1 @" a _% fp4 x fourth root (of) x* c- f8 s5 D/ [6 y
npx nth root (of) x 2 ]! z. I. P. l/ A f- Y(x + y)2 x plus y all squared 2 Y3 U6 I! G F A& C2 W4 E³x! N, ]0 u* s- Z4 _0 A
y( V6 J( N0 J+ i2 c: p q
´2 9 q9 E* d6 q& A! bx over y all squared& v' _# K5 a: x2 E
n! n factorial! o! l% [$ _- z
^x x hat , s# N& O, g, Y- R¹x x bar9 f) o" y& c! t O8 m ^7 E
~x x tilde - ~7 d1 v( b5 }; o) y/ q: qxi xi / x subscript i / x su±x i / x sub i3 C3 v3 ?- \ y6 K1 _
Xn8 E+ w- A9 q7 Q
i=19 G2 \& m: s" N, [/ m) w. d5 \, E
ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai + ~" W% }9 {% {- w/ f4. Linear algebra8 d; F2 z# M( `: U& j( R" z
kxk the norm (or modulus) of x : ]& N# Q# j T% zO¡¡!A OA / vector OA 8 p8 U" J1 Y3 EOA OA / the length of the segment OA. U' ~: x: k+ B( L! b. S0 X* N
AT A transpose / the transpose of A & A" \1 J. {' h7 m4 a) m' h& W$ VA¡1 A inverse / the inverse of A I4 _ w1 {6 V0 _' V ]3 u' K2. r* _% }; _7 \/ e
5. Functions 1 S% z7 \) ]* E) d6 Qf(x) fx / f of x / the function f of x3 u( ^) R" J T. i& D
f : S ! T a function f from S to T$ V4 n O n/ e3 |" e; S" @
x 7! y x maps to y / x is sent (or mapped) to y5 H, n! R" E% v. \5 e
f0(x) f prime x / f dash x / the (¯rst) derivative of f with respect to x ; i! @% a$ {6 { {4 O% [8 t( b mf00(x) f double{prime x / f double{dash x / the second derivative of f with & x( e6 W+ m: D/ ~- urespect to x 1 D, _2 ? k/ ]7 H0 G5 ^f000(x) f triple{prime x / f triple{dash x / the third derivative of f with respect' ^: g% ^$ M Q: l, T+ }
to x Q& J- m: c4 n7 x0 {
f(4)(x) f four x / the fourth derivative of f with respect to x8 H! c, {3 s: \$ ^. K/ H+ d
@f8 _1 O# f) x6 p* n" a
@x1 # D5 T* `& }, J" X% r bthe partial (derivative) of f with respect to x19 g# B( P8 W) A% M! F0 _
@2f# O1 ~ T4 k) X9 w' \: }* |* v* f; A
@x21; S$ @' O- m8 d
the second partial (derivative) of f with respect to x1 + A7 a- n$ I. {8 o/ [7 g8 zZ& }- v# _; k' ]# c1 t$ M
1 # t4 C2 q; A& h; B0/ U# K1 C1 k* _! K* r
the integral from zero to in¯nity 9 I7 \/ u- V+ P9 ^2 clim 1 ]( o6 X$ \$ J6 |8 `x!0 / H* K7 S. m6 V( D0 fthe limit as x approaches zero+ K% c1 \$ Q# X ?
lim ! T+ |: y) ~9 |- H& o+ t$ K3 Dx!+0 - r9 S" r3 h/ i+ N; G8 Bthe limit as x approaches zero from above , m1 S: N% H: `lim 7 I8 l1 ~9 ^. @, e8 \# Fx!¡0 " T$ d2 H9 \7 d8 J9 Athe limit as x approaches zero from below: k G/ {6 R/ c+ m( `
loge y log y to the base e / log to the base e of y / natural log (of) y W, d' T5 `1 ^+ o: l; sln y log y to the base e / log to the base e of y / natural log (of) y ) c- [& G- Z" d z/ d3 l1 VIndividual mathematicians often have their own way of pronouncing mathematical expressions 5 y8 I, {, Y" B0 S: ]! Z) Jand in many cases there is no generally accepted \correct" pronunciation. 5 A6 _; r; C( S6 Q) XDistinctions made in writing are often not made explicit in speech; thus the sounds fx may 7 x. t1 s+ ~. g6 e; k8 Ebe interpreted as any of: fx, f(x), fx, FX, FX, F¡¡X!. The di®erence is usually made clear$ ^( G; U* z+ M7 }
by the context; it is only when confusion may occur, or where he/she wishes to emphasise % t/ M' d7 j* ~/ rthe point, that the mathematician will use the longer forms: f multiplied by x, the function- {- M# ?( r4 A! m$ @3 n4 Z3 `
f of x, f subscript x, line FX, the length of the segment FX, vector FX.) o2 {0 Z1 U* z3 _
Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes 2 A6 k; }% g0 m4 v- D9 Da di®erence in intonation or length of pauses) between pairs such as the following:+ T/ a9 D$ g4 G6 r
x + (y + z) and (x + y) + z# b n& t( s* ]( ? w# a# A
pax + b and pax + b1 q" e/ @. ?% }4 i
an ¡ 1 and an¡1 8 Q: a2 H4 S/ V3 m& ?( M- FThe primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science8 q6 k: C- L" v! ]1 Q; B* @
and Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have7 c" L4 ~0 A$ A1 v
given good comments and supplements.3 Z1 ]0 G) s4 i2 E9 P3 N( A
3