QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3282|回复: 4
打印 上一主题 下一主题

311数学结构种Mathematical Structures

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-12 13:19 |只看该作者 |正序浏览
    |招呼Ta 关注Ta

    4 n; W' j' H! {6 h8 p; k' X" K2 R9 f4 V) d$ ?
    Abelian groups     Abelian group
    " z3 x( p: N5 L: s; ~, TAbelian lattice-ordered groups/ j- o4 J1 S" ]& l7 E
    Abelian ordered groups6 V9 I2 s! \5 ^
    Abelian p-groups
    5 K4 A( j( H, }  ?Abelian partially ordered groups
    7 Q; j5 ?9 m5 t) i& y* d$ f  OAction algebras     Action algebra3 `. O' Q- i. o
    Action lattices* J+ a, Q6 T3 N. {& b, s/ e! V
    Algebraic lattices
    - d; t( M3 ~1 k, i. Q: f/ E( J8 LAlgebraic posets     Algebraic poset
    ! d5 j; ^0 s! a2 J- P: D8 v1 @, MAlgebraic semilattices+ b# `- J1 \9 W
    Allegories     Allegory (category theory)6 }; R+ f! T* s5 i. L( `4 Y
    Almost distributive lattices
    2 F8 X. G  M; p+ b/ o& D3 PAssociative algebras     Associative algebra7 e2 U: b( M) j
    Banach spaces     Banach space, t; t; S  u" D& E; R0 h* f" ?: O
    Bands     Band (mathematics), Finite bands" f2 l% e3 s: u: Y) X0 i6 K/ v
    Basic logic algebras
    $ W" o# I& J" @3 U* x; {: J" M* `BCI-algebras     BCI algebra( d/ o5 t7 U5 x  O
    BCK-algebras     BCK algebra
    3 U9 ]" i. ]6 e7 m4 O. N! i# J6 |BCK-join-semilattices: B# G2 j8 v. z. k
    BCK-lattices: u2 y! v. F7 P2 s
    BCK-meet-semilattices
    - @) w3 H5 f9 GBilinear algebras
    ( c% B5 D! }" o0 I0 W/ m8 KBL-algebras
    $ A/ G% i) K' D* Y; v: X+ l( SBinars, Finite binars, with identity, with zero, with identity and zero, 4 o6 l2 Q8 B8 W3 k/ T& j
    Boolean algebras     Boolean algebra (structure)
    1 w; H: h  U; s5 t/ N' j, z; _# K6 NBoolean algebras with operators
    ) t! }5 ]" L6 v6 fBoolean groups
      X$ B! k6 G: g" n/ I" Y5 i  HBoolean lattices
    4 P! W& m% d6 D1 |* u2 F  @6 I, K! y2 \Boolean modules over a relation algebra
    % ~7 q1 v0 j- _2 {7 B2 `& YBoolean monoids" J7 V# I& Q3 A4 ]) i3 M( H
    Boolean rings4 p1 o. _" N! I
    Boolean semigroups
    1 ?- T- t' q9 d* z( f! x8 UBoolean semilattices- b( F5 k. x: n. B  ~  b8 ]# L9 P
    Boolean spaces, k) B: R. P/ L% S$ R) k
    Bounded distributive lattices
    + y  F: z2 y8 d- z/ T; ?5 QBounded lattices
    ! M1 h; v' k$ O, TBounded residuated lattices
    ; r/ f: s0 K# k$ h/ ^  {7 Y' hBrouwerian algebras
    - j& c$ L; b, m* f- K. ABrouwerian semilattices7 `1 q( x, o" r8 p: |2 q6 \
    C*-algebras* Y& _0 Q, j% K0 ^- T) B
    Cancellative commutative monoids( H7 ?! L8 h! h$ }! u4 y/ Q
    Cancellative commutative semigroups
    ; a5 |. f+ b+ L1 T) ^# sCancellative monoids4 }& [# p/ X1 s: T7 G
    Cancellative semigroups( o5 b4 o" I) b+ s( y' ~3 i  m, L
    Cancellative residuated lattices
    # ~% m+ M4 y% K1 N6 bCategories
    . ?0 o3 q6 v* ], R  S+ AChains/ }1 R0 ~& A& O( R" W
    Clifford semigroups, I$ G. w# m8 H+ ?! y0 V0 v8 R
    Clifford algebras
    % W# A% G: {3 u9 j7 d( HClosure algebras8 A" G& T1 u' c  A2 b2 A) U: K- ]
    Commutative BCK-algebras! m# r' \+ `9 k( K1 ]) ]9 _
    Commutative binars, Finite commutative binars, with identity, with zero, with identity and zero
    ; i. [" V3 b# h, s( v  Xcommutative integral ordered monoids, finite commutative integral ordered monoids
    4 ~  M" [  z) ?$ `! aCommutative inverse semigroups
    . F$ ]* M& a+ |. R0 JCommutative lattice-ordered monoids
    9 K# b2 D# F' |Commutative lattice-ordered rings
    - |8 s9 d" A- S1 w* h% ACommutative lattice-ordered semigroups
    ; i- j# q5 v3 i+ r9 P4 oCommutative monoids, Finite commutative monoids, Finite commutative monoids with zero- _1 T  @/ N" ]' x8 P) _, b# L5 Q
    Commutative ordered monoids
    - _4 {6 Z+ D0 l) n3 M1 KCommutative ordered rings6 _' A: R) B9 n, v$ i; _
    Commutative ordered semigroups, Finite commutative ordered semigroups* O6 B0 ?: S1 ]
    Commutative partially ordered monoids
    + O5 L: a# g! H: c+ u0 d2 |Commutative partially ordered semigroups
    0 f5 h2 o5 w$ SCommutative regular rings
    $ Q- v( T. _1 M7 [1 UCommutative residuated lattice-ordered semigroups
    6 l% M! x; t" C2 E$ }Commutative residuated lattices
    1 w/ m5 t  J, B7 ]" tCommutative residuated partially ordered monoids, `! s; E3 p. p8 I0 Z& {6 d5 \
    Commutative residuated partially ordered semigroups
    : m$ S3 ]2 a5 w3 PCommutative rings- ?  w2 B1 C& V- S, z* e
    Commutative rings with identity
    ) e# b& ?( h; f1 KCommutative semigroups, Finite commutative semigroups, with zero
    ( y3 ?# s2 b2 H$ l8 \Compact topological spaces7 i9 v6 c3 J$ k& d8 Y/ r! r
    Compact zero-dimensional Hausdorff spaces# Q( ~  W2 b# }! |0 k8 P: Z0 q
    Complemented lattices
    - F% v/ C0 Q3 [3 D: c  V8 XComplemented distributive lattices
    & ]6 b$ @( x3 E/ Z2 ^Complemented modular lattices9 }7 i: O: G; \  u- `9 \0 [
    Complete distributive lattices
    7 A( Y* R* {9 w8 }- \& q/ Y% Z) j* |  _Complete lattices9 ]: K. G+ Z* L) @1 ^
    Complete semilattices# x$ [+ ~' L. d) p) J
    Complete partial orders
    ) k- o4 s3 v. e% FCompletely regular Hausdorff spaces3 ~- |, z9 e& o% l1 [
    Completely regular semigroups
    9 p4 h2 j7 T$ R9 d4 |, ^2 SContinuous lattices
    6 v9 N! O- y- O1 iContinuous posets% v. X% h* f3 ^5 [
    Cylindric algebras
    ' _' [- o7 r7 fDe Morgan algebras
    # \" O8 F( g/ BDe Morgan monoids7 c; u; L3 `/ W1 u5 K$ i1 L
    Dedekind categories
    : T/ k. L. G% K4 L1 yDedekind domains
    " n% {# Q' T$ C3 IDense linear orders
    ) C$ y- N# L+ ZDigraph algebras
    5 Q$ \; ^4 x4 TDirected complete partial orders
    $ K  W6 l) m& u: m- [! m! CDirected partial orders2 t" W' _' V% U4 U4 ]
    Directed graphs
    3 f$ h$ A- n4 F) X: R) {Directoids
    & x, ~+ o3 e/ ~% lDistributive allegories. z( r! \: q: @' Y
    Distributive double p-algebras
    ( K4 f- H1 o0 f% jDistributive dual p-algebras% c# I7 i+ @& p7 e( W0 F# v/ X: M& w
    Distributive lattice expansions
    9 g0 L1 l: m! j5 U8 K/ x6 i4 [Distributive lattices/ z, [- f. }/ _) }. \- g+ ^& U
    Distributive lattices with operators
    $ s- `1 ]: z% e; YDistributive lattice ordered semigroups8 Z' p4 N% V2 u  t1 Z) U# j
    Distributive p-algebras! H" {+ T8 U/ g2 |
    Distributive residuated lattices" \. H7 A7 g% L4 u: f
    Division algebras
      ^/ I$ i$ W$ X  ODivision rings
    ( }/ h2 L' \( V# R. G3 U) mDouble Stone algebras
    2 C+ [3 v$ F; [0 }( A, R. uDunn monoids
    1 Z: @2 K/ V, QDynamic algebras
    ' f$ F  c' u* V7 Q4 x' i( {Entropic groupoids
    , T8 i3 u! X9 ^Equivalence algebras9 u( G: T9 d) D( E, V5 f* F) N0 p
    Equivalence relations$ X/ b# S4 z- S
    Euclidean domains% ~% \" J" y% E( c$ y
    f-rings) F, _& D. p# w: b
    Fields
    ! `) B/ \2 E* s: q  u9 D3 }FL-algebras! o. c/ Q% J/ C. G7 S; a2 j- H4 Q- G
    FLc-algebras' s. r# N) B% p: |' L6 c6 X2 ~7 p! p
    FLe-algebras
    ! j2 t$ m* E, v# `7 @2 t4 f- v5 Y) UFLew-algebras
    % O0 E# G9 C; y& f0 ^- RFLw-algebras. [0 P+ N+ X8 g
    Frames
    - O4 H1 M* n$ [# ?6 ^8 FFunction rings
    6 n4 a) [6 O. y& ^4 CG-sets
    , U! |2 u: [/ X7 K+ KGeneralized BL-algebras& k& t$ S) D5 m1 q4 i' \4 Y
    Generalized Boolean algebras
    ; B  f* M' D# XGeneralized MV-algebras
    9 s4 G- M1 R3 T) @Goedel algebras
    ) p# R" `+ O5 H. B4 \Graphs/ W+ W$ V  e! ~& B+ c& P* R
    Groupoids2 Y2 E- j- @2 a
    Groups
    . V; P0 I: ?" y3 k2 gHausdorff spaces4 _7 _  v4 t9 ?# @& L8 `  R) r
    Heyting algebras! _) g8 y3 T' E/ X5 [5 e4 k
    Hilbert algebras
    ' R# \3 t" x4 M, {& J' [% PHilbert spaces
    9 C  ?2 c+ r8 z0 l3 Q+ EHoops" L1 ~4 j/ s. T( V! T
    Idempotent semirings
    / A# M( q1 l" p. n4 B6 }& _' gIdempotent semirings with identity
    9 w! M1 e5 B- w8 n0 ]Idempotent semirings with identity and zero* z; D) u- d) p. m3 c
    Idempotent semirings with zero+ y& b9 W' D2 R/ x, t% Z6 E% |
    Implication algebras4 f# Z6 u7 B5 @( n* H* J
    Implicative lattices/ d0 c$ N) a3 \) N, \' b$ e9 u% c
    Integral domains
    2 z& I# y. A* vIntegral ordered monoids, finite integral ordered monoids
    1 P7 l8 i' T: |% L" b2 fIntegral relation algebras% l& j1 A( o. D
    Integral residuated lattices
    $ I1 b1 j% j% F6 X6 k5 c% QIntuitionistic linear logic algebras$ h+ _2 Z5 W$ l/ f0 O" g
    Inverse semigroups
    ! \! o+ J  d: j; A+ Z. t5 H5 [Involutive lattices
    . ]6 Q$ [% \1 x; h+ i0 n- c5 gInvolutive residuated lattices- q% v" `3 z6 F' T$ F' g$ T0 f
    Join-semidistributive lattices
    5 s( n/ _) r+ h5 K7 X6 c( vJoin-semilattices, L+ h  t6 D' J0 y
    Jordan algebras
    * h- d) F5 T/ C" T" @Kleene algebras
    ; L' B* R0 o- _1 p. ~* MKleene lattices
    # I4 }' y# g/ _1 {: LLambek algebras
    7 d2 m3 w5 K; e8 p/ zLattice-ordered groups! P5 {" i, U6 D$ k) _8 L
    Lattice-ordered monoids
    + x$ Y) t' E/ x* rLattice-ordered rings, l  E/ i0 v% G# ^; X; k
    Lattice-ordered semigroups- ]$ e" |2 K$ J
    Lattices
    ( L( p0 ?+ U8 ^- q" ^8 jLeft cancellative semigroups
    + x" P, _3 Z; v% |Lie algebras
    4 `4 z: n4 g9 h6 LLinear Heyting algebras
    % }2 H% a6 Q$ E+ L7 A0 GLinear logic algebras1 U, h: ]) G/ y" H  Q2 R& h! @
    Linear orders+ W  a. {- F# T8 v5 c9 [
    Locales5 `! v/ Z) `' w2 r  H
    Locally compact topological spaces
    5 u2 l2 d0 `+ i# nLoops
    & \* K( }0 ^) S9 c* l& v- @5 i/ sLukasiewicz algebras of order n
    9 B! d4 B6 H. ^$ i3 kM-sets
    7 e) o/ V0 V( H( J4 J4 ZMedial groupoids: Q6 h# A! |! I* a  \" a. \
    Medial quasigroups1 g$ l$ p0 e9 Y; U0 c. y
    Meet-semidistributive lattices1 @: Y9 M5 U/ a  i( ?
    Meet-semilattices
    3 u7 u. r2 J9 R6 ^9 E: ]Metric spaces
    ( Q+ f! p& I$ uModal algebras
    ( s4 x$ p* E8 v* R, A8 fModular lattices
    4 I# W. I# z% U. x: a' I% KModular ortholattices3 z* Q- U  ?/ }  r2 u* z+ d3 ]) a
    Modules over a ring
    : V. l: |  W' W+ X  `4 O( _Monadic algebras2 x, [' A/ X( Z; Q# L
    Monoidal t-norm logic algebras, o- ]$ g. c  _) x" X; H
    Monoids, Finite monoids, with zero2 q: A2 G! K( x$ u& Q6 Q
    Moufang loops
    9 |9 s; p4 H+ I- b+ a% TMoufang quasigroups: c8 Y' o: c8 b9 X$ i1 W, Z
    Multiplicative additive linear logic algebras% J+ z" d2 h8 Y% u( B7 Y
    Multiplicative lattices  E, `' n0 z5 F6 p: r! p. j
    Multiplicative semilattices
    * f0 R  [! y1 W3 L# H# b2 j+ M  {Multisets  u' o2 `1 M$ j, T
    MV-algebras
    ( ?+ z5 H! F  A2 Z5 @Neardistributive lattices
    . b6 k5 v) {, m3 @, yNear-rings
    $ t6 }# q0 t& {' jNear-rings with identity* H; `+ X& [  \$ [
    Near-fields
      y& _2 Y7 M5 r& uNilpotent groups
    * B  e7 F+ d  @3 [1 e+ hNonassociative relation algebras0 v- n3 l6 z6 {5 }
    Nonassociative algebras( A# l4 r: P( K* D" R, o1 {/ k
    Normal bands) f) _/ V6 Z" Z3 _# ~
    Normal valued lattice-ordered groups" L$ [. p" ^4 S7 k7 j; j
    Normed vector spaces
    5 ~6 V3 ?: n" T- a9 ~8 g6 ^Ockham algebras. N2 W/ E( `8 a, V' Z+ u3 G
    Order algebras' w& f. f1 m; t0 d
    Ordered abelian groups+ A) d. J1 \# E6 Y7 u- k! c" K
    Ordered fields
    ) K! r7 u  F4 |$ O4 yOrdered groups' k% {, e* S3 z+ q$ ~0 d
    Ordered monoids
    4 R* M2 B" ~- zOrdered monoids with zero
    1 |4 K7 l" V2 ?" v% nOrdered rings8 F% c3 v* [( w( a2 K/ u
    Ordered semigroups, Finite ordered semigroups, Finite ordered semigroups with zero  k# U% @4 `2 g/ Y# v7 X3 K' {
    Ordered semilattices, Finite ordered semilattices
    . p. G8 V2 \4 l& |; [% k7 gOrdered sets
    9 F$ I+ [9 A" Z8 N2 ROre domains) U! |  }' o* X* k" y! D" w
    Ortholattices
    8 Q, z: J; f4 Q' l8 }7 @Orthomodular lattices
    ! V" Z$ L+ k: J5 Y9 ^5 Cp-groups0 W( G5 M. ~" w8 C( [
    Partial groupoids& z" T' m! x4 o% Q1 f
    Partial semigroups
    % T+ l# y6 I1 ?' i" z- E( HPartially ordered groups8 N% x& B% ^% K2 a' `
    Partially ordered monoids
    0 j, W( C4 Y- pPartially ordered semigroups# |8 _' V. i( c: c
    Partially ordered sets8 D# ]. f; T4 E0 {
    Peirce algebras
    - w2 f3 ^/ d4 h: U4 |Pocrims0 [3 a/ _( i" F- a) a0 u1 `! l3 S
    Pointed residuated lattices4 {2 ?- v8 t$ E8 |  _9 X; v
    Polrims
    7 U; {$ J" |7 z% ]: MPolyadic algebras
      ?3 [/ K( h+ z& z+ PPosets
    0 D: ^/ x, e5 y) wPost algebras) i8 V. I  V4 Q
    Preordered sets
    ! X" K) ^, g6 K6 kPriestley spaces) R/ g& h3 ?, H1 d3 L! z8 g$ A
    Principal Ideal Domains  y  |4 ~" f# |% V/ q6 W
    Process algebras. }0 N1 h! _6 \4 q
    Pseudo basic logic algebras
    + a8 W& f+ R# T' g* hPseudo MTL-algebras6 P$ l; W; z( U* A+ f9 o# O% i
    Pseudo MV-algebras2 u4 o4 T1 \6 Z  r, s1 X, p# b
    Pseudocomplemented distributive lattices6 u5 X, a# w- }4 A  s
    Pure discriminator algebras
    ' D% {6 t% h8 _0 C8 zQuantales) U  X+ Y6 ]0 _( ?; y2 G- U
    Quasigroups
    $ }: L8 x, T) i7 a8 eQuasi-implication algebras. o2 n  n7 M) Y) S
    Quasi-MV-algebra% Q6 y( L3 j1 d& P  _
    Quasi-ordered sets
    + z6 n2 A3 Y; ^/ m% VQuasitrivial groupoids" u! t& v5 U' ^* @
    Rectangular bands
    3 ]% G+ E1 V1 R' ^3 v3 n& ~2 z. EReflexive relations
    0 H, @* u" g4 @& zRegular rings- m6 S! R8 p9 C/ b& U$ Z5 \
    Regular semigroups/ U  c  z, {& M2 s4 P4 D8 ?/ e
    Relation algebras5 S& U/ K. Q4 M: F4 s& k+ b
    Relative Stone algebras* x3 N! ?; V0 {0 @4 ^2 j
    Relativized relation algebras: W1 I$ g- [9 x/ D+ `" ]; e6 G2 G
    Representable cylindric algebras
    3 y! R* f0 E/ R. g+ c8 g& U) LRepresentable lattice-ordered groups
      S2 Y8 P3 y* B: D' i: yRepresentable relation algebras
    . a6 ^2 R1 y4 m' `# M* D  TRepresentable residuated lattices( G/ c) z% n1 F
    Residuated idempotent semirings. D; v( I- C+ J8 |: K* F' h
    Residuated lattice-ordered semigroups# \" s: w) P9 d( R" V; p6 a
    Residuated lattices& B( r8 _' B$ U, p1 z
    Residuated partially ordered monoids' `6 t3 V7 f/ @( D9 h( f: n
    Residuated partially ordered semigroups- L  b; R: q! t
    Rings$ z7 V0 u" ^/ k# [
    Rings with identity/ x5 @  r. s7 [0 t1 G: `
    Schroeder categories
    ! c1 m9 R; M, \0 ^- RSemiassociative relation algebras8 i# p; N. ~& b; j) c$ m
    Semidistributive lattices
    3 [& H' \% J; @/ Y6 U; u4 d# q( USemigroups, Finite semigroups& l: \: P1 i$ P' C5 B( o+ g$ \
    Semigroups with identity9 L& |$ H$ N, |0 F$ \% a; a% _
    Semigroups with zero, Finite semigroups with zero4 J) x3 j2 d" [
    Semilattices, Finite semilattices
    ( u2 F6 H" P4 f/ rSemilattices with identity, Finite semilattices with identity
    & N% T3 W% [9 FSemilattices with zero  ]% c7 r1 I6 f. e$ j; Q
    Semirings, e& q1 K0 H; G) Q' q- k, l
    Semirings with identity$ s+ h1 M+ L8 X
    Semirings with identity and zero
    5 Z. B& T3 T' [0 p3 o; f# fSemirings with zero
    1 o- _4 u: s2 ?Sequential algebras
    ! o9 R9 M! Q) P: I) L, \" WSets
    0 f/ v+ A2 }, l7 M. uShells
    % {9 g+ f1 j8 x2 A* z& r+ [  Y0 NSkew-fields% O0 I% X5 |0 b2 ]% E
    Skew_lattices
    ( L  l8 d7 F, B0 fSmall categories" d, J0 R5 B5 d0 u
    Sober T0-spaces
    + K/ ?- [! T. \5 W7 @  RSolvable groups
    3 x2 l* L1 Y* n9 m- P# B. WSqrt-quasi-MV-algebras5 J7 S( y# h. d+ A
    Stably compact spaces
    % v" T7 n! i# @  h: v, V" I! }Steiner quasigroups) V+ K. N8 G. B# x3 P
    Stone algebras  w- L' B3 ^* }, H
    Symmetric relations+ ^* W  h/ x8 h* Z5 m. v6 [
    T0-spaces4 q8 }8 O5 p7 Q, Y2 s
    T1-spaces4 i5 Z3 {. D0 V5 o0 U9 h0 W5 r' |0 x
    T2-spaces
    : P& l- l# h: PTarski algebras
    $ T6 F5 g9 T6 c4 p5 D4 gTense algebras- y$ ?1 J+ \: P5 Q2 g0 a
    Temporal algebras
    + r. e$ Y3 a. e2 j* D9 a+ B& kTopological groups
    + J2 n; Y+ [0 wTopological spaces
    8 {6 i1 B& C6 B( F: V! W; n! lTopological vector spaces
    . x& |6 ~( e  G% D7 nTorsion groups- N/ n  J& [- r
    Totally ordered abelian groups, R; M. N7 D% P$ M
    Totally ordered groups, }$ c. [3 X9 m- r
    Totally ordered monoids
    + }* x, a3 n" o+ o, V1 P" h& ^Transitive relations
    ) V1 }& [  o: H; d$ WTrees
    6 [$ `1 n* W& K# ]. G3 @8 kTournaments0 [; o* s' N5 V: {0 \) g
    Unary algebras
    ! D3 w/ I! N$ q# ]# I0 I, K# X7 ^4 iUnique factorization domains* ]7 {; c) |# E
    Unital rings
    " Q8 V$ o! i% _% c  YVector spaces
    / t3 U! Z1 g6 q% k) MWajsberg algebras
    . \  E  G' D% {) c% V  {$ pWajsberg hoops
    ( G$ }2 t+ z" ^0 V. oWeakly associative lattices
    ) [- I+ s* x+ K8 R5 p+ l0 gWeakly associative relation algebras8 n- L6 u: a( e' g$ U! M) y
    Weakly representable relation algebras# z8 G; g  ^' D* \+ Z2 f/ g1 N
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    ZONDA        

    0

    主题

    4

    听众

    3

    积分

    升级  60%

    该用户从未签到

    回复

    使用道具 举报

    qazwer168        

    0

    主题

    4

    听众

    53

    积分

    升级  50.53%

    该用户从未签到

    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    阿贝尔群Abel群
    $ c1 C# h  B4 B& b1 u5 ]阿贝尔格序群
    # }( w, p9 S+ W* x9 G2 A. z阿贝尔下令组* x) m. t: r! H" x, z9 v
    阿贝尔p -群) z7 @% E& W% N6 f2 r
    阿贝尔部分下令组
    3 s2 t3 X  r' |, m& T( f行动代数行动代数8 s# s9 l" A5 c6 J1 B
    行动晶格
    0 m# W5 y  ~2 ^3 ~" t- W2 B# Y2 X代数晶格
    1 v% p  \2 V9 K( J* H代数偏序代数偏序集0 B- H6 b" q( M* f5 K% w3 [
    代数半格
    ' [. Q1 ^8 z% o( g; {' ~$ T- w寓言的寓言(范畴论)
    0 p$ ^/ F* y' a+ m! B5 i. T3 p几乎分配格
    ) R% a! x- P- K* l5 J9 J' R关联代数关联代数
    * v0 e; G7 Y! v( j. }( H- K$ _, b& BBanach空间的Banach空间
    7 C; ?, e! b: k% m乐队乐队(数学),有限频带
      Y8 m$ ~. ?* l0 F- ]: L% s$ @$ g基本逻辑代数) r" m4 U* Z" M9 I5 l/ Z- w3 U3 M
    BCI -代数的BCI代数
    ) V" i! f" Q5 v3 W7 D3 `" e8 a' YBCK -代数BCK代数
    ) g: U! j2 W9 @, R7 v# W/ \# IBCK联接,半格6 S' F4 y$ H' Z! i7 l- H: x4 m( ?
    BCK晶格
    $ x$ {/ x, _/ L; dBCK -满足的半格% W4 p7 A$ u/ {; O/ m7 b; A5 ~
    双线性代数$ P8 z4 w# \, d# N0 x8 m
    BL -代数
    + T# }* Y3 b$ l3 MBinars,有限的binars,与身份,身份和零与零,  u3 H) I7 Q6 X" H
    布尔代数布尔代数(结构)
    1 K% _, h4 S/ I( o与运营商布尔代数
    / o( M( _* o5 a+ ]$ w! I8 _布尔组
    / f% V9 O* h' G) s7 |9 |: s0 O5 q布尔晶格
    2 K2 H# h5 @* q/ r对关系代数的布尔模块9 L: G0 G% k0 X) d
    布尔半群' T2 {9 E, g0 \/ S/ s
    布尔环
    0 G) ]/ w" d; q7 k布尔半群
    5 y. `7 _  N0 r9 g7 \5 S' v布尔半格" h, @, y8 f4 u6 d' M" a) E
    布尔空间
    ; j6 q  }7 g. B1 P" ^; T( Q0 G0 ~有界分配格! ?2 `; n5 R1 |: r# ]# g9 P
    界晶格# q8 ^8 |9 A. |3 z" b6 i2 M9 E
    界剩余格
    / M% m& @) z! NBrouwerian代数& A1 k: b, }8 \, V
    Brouwerian半格& o  E, S: i( l" D/ k1 w" J; G
    C *-代数
    5 X  P$ o2 h; K8 x& l# P. M/ o+ n消可交换半群) F9 ?0 _% z: v! e8 j4 m9 x5 U
    消可交换半群) g  _% A7 F" ]
    可消半群
    ' n  K3 F: N1 Y, X2 f可消半群9 g" m% o! S( R* B9 P% Y( S+ t
    消residuated格& @8 b" ~2 `0 b0 a5 I" N
    分类
    $ E  K) o4 C; \1 y+ r1 G+ \: [
    / h8 l2 e4 i# A克利福德半群
    8 x* _" Y: M4 |- n" OClifford代数8 z8 k/ I/ y% |, V( `
    封闭代数0 S/ `: C" |( R& r- c5 b6 _- ^/ ^7 I
    可交换BCK -代数
    / S4 b: l, M5 @3 c4 T交换binars,有限的可交换binars,与身份,零,身份和零1 c  k3 |, M, o- R4 a  |4 Q
    可交换的组成下令半群,有限可交换积分下令半群
    * a  `$ U( A$ D3 I, B0 s4 B! u/ }交换逆半群+ B9 x# L& s) J( L
    交换点阵有序的半群6 P6 d: k, z4 o6 H2 y
    交换格序环
    . t9 H5 k  }: G交换格序半群
    ( ?3 p5 N& Z5 v7 a9 Z交换半群,有限可交换半群,零的有限可交换半群' v; n% Z5 k7 D5 E" w  K( s+ S! A
    交换下令半群
    2 g4 N) Z: B( V0 M3 C4 x3 Q+ b交换下令戒指
    1 x" Q! Z" t6 h/ x  c! W8 T有限交换交换序半群,序半群& A, I4 h4 F- {( r' h1 Z! P4 q
    可交换部分有序的半群" [1 i# P! c* T' k% z
    可交换部分序半群) v: `1 W$ d& w1 C. M& `8 R
    交换正则环
    0 k5 e+ r2 a! G; A% F" h: t" W交换剩余格序半群% i! n9 J( B# i6 J: B
    交换residuated格
    $ v. K% i) f4 p( k: d, R可交换residuated偏序半群
    , A* ^" |; \, z5 p可交换residuated偏序半群) Y; j. l, B' f# K
    交换环' Z* L3 m, K7 H# @4 i  y
    与身份的交换环  S" T! N( w+ `1 R
    交换半群,有限可交换半群,零3 I2 u) p- |8 b( a) s2 A7 z5 O
    紧凑型拓扑空间% ^% B% }2 O1 j0 n5 N
    紧凑的零维的Hausdorff空间7 ]& h& B) u4 h2 n
    补充晶格/ _" D- d7 L1 w  _4 O+ f& B1 a
    有补分配格
    ; [) g/ Z$ H$ `+ S: Q1 z补充模块化晶格5 f$ y2 a% C+ P! h6 T2 ~7 n
    完整的分配格. X; J6 Z2 v% A  P
    完备格3 n. l$ j2 G" F7 v5 C2 g6 }# G
    完整的半格
    ; f: t) U& m" f- [完成部分订单
    . h4 b" i2 }1 ]完全正则豪斯多夫空间
    9 T7 ^8 [! O% W& C完全正则半群
    ; f* l& T0 C4 B% X7 ^* B+ g# m连续格" z( D; @/ F0 `8 v, S1 e8 c
    连续偏序集  F$ K5 e# o, g  C1 V0 t
    柱形代数
      F2 f. ^' }" h4 [4 h9 r- |" I德摩根代数
    2 V: l& x: I3 h4 }9 H. s) y! F德摩半群* K* k) x. o6 d, `, [+ o* M" N% I. ~
    戴德金类别3 ]/ {  q4 X0 g
    戴德金域+ P% F9 P# H$ U4 w
    稠密线性订单1 O% T  b: C5 |# C/ k& a
    有向图代数
    # s! L2 c" L! M$ \7 k2 \导演完成的部分订单% h8 g0 S9 D- M
    导演部分订单
    1 I% c& F/ F+ {6 [8 C4 O7 S6 S有向图# p8 X2 I' f/ L' r2 i+ ]
    Directoids( N0 P. |9 Y7 R0 C4 b! t' |
    分配寓言
    $ x+ r) K- b$ x' o  ~分配的双p -代数
    ( v, S' D- r# d分配的双P -代数& e+ O8 x; [6 ]  r! H' o( e3 `
    分配格扩展
    , [) h6 N. [$ H! E分配格7 r! b( V; x. v! q4 C5 z+ ~8 R
    与运营商分配格
    : U6 q, N, A/ V, d% x. M1 e/ j分配格序半群
    ; |6 f. U3 }9 \5 f& ^6 r) U; p分配p -代数4 f( A% e8 v6 i0 `/ G2 O
    分配residuated格! f. l3 \' B) l7 U! Y3 s
    司代数/ a% h3 Z! S6 b  v' k- w7 x; S
    科环
    9 J0 G; D0 ]1 g1 r# h3 Q$ Z双Stone代数
    5 F7 H; X, M& g& @( b; r+ }- P邓恩半群
    * ^* S# K( o) [6 W动态代数
    : c6 s* b7 Y; ]9 a2 |熵groupoids6 U# V, B# N2 l* o( q
    等价代数
    " g- o2 W/ v& g. D9 l$ g" m等价关系
    ( {( H/ y+ ~  i1 F4 q欧几里德域
    4 d1 R2 f# P$ j- d  ?. r3 l1 XF -环4 I, U' `& Z3 R; W0 |
    字段
    ) p2 B" Q8 q1 V5 R1 S+ I3 `FL -代数& L1 G. R$ B% e$ T9 R- }
    FLC -代数
    & v/ H7 Q$ K$ E+ Z& C; a& L1 RFLE -代数9 k- d! k+ @, `9 b" g
    飞到-代数
    . l3 p/ I& i1 @2 FFLW -代数5 R% y- R7 @2 S  c& `5 _# R0 m
    框架
    0 L7 [# \( q! j5 w9 _功能戒指9 R& [1 \4 f; Q, d, g4 `" ~
    G - 组* k+ J1 X& k" B
    广义BL -代数
      N1 t* C+ m) C4 E* g广义布尔代数
    ! X2 ~# ^: e0 E& D广义的MV -代数
    : B  F" |9 m5 R$ O! i1 H& p& ]: c0 |Goedel代数$ t- `% L" u- {8 q
    3 q! e. ?9 _% Y# o: G7 p  `
    Groupoids/ @) [7 `$ r: J& `/ C0 n/ D% M

    + N$ t; H- J+ u  c- b2 U# y4 o豪斯多夫空间
    1 z4 X/ {5 @& H: g! G; w' KHeyting代数7 ?, g* v* `# E2 k) G
    希尔伯特代数# _+ S9 Y  d2 E
    Hilbert空间
    , R+ G+ w* H* \! X' o: x1 N' B篮球
    - f* @3 o7 {( @% F5 p( \幂等半环
    0 B; A9 k7 D5 d0 P1 B8 J幂等半环与身份. h& v" Q3 Y1 m. W; a7 M- i
    幂等半环的身份和零
    ) c: ]+ V" k& I- |幂等半环与零
    + O: \2 t. \9 ^$ y8 ^1 a: C/ l2 X0 G蕴涵代数; T# W% T1 l) e
    含蓄的格子- C) P( z: }/ I! @8 Y" s
    积分域
    - i* ]. T4 H$ @7 [) P9 A: e* u9 T积分下令半群,有限积分下令半群" c2 r9 i. E  ]0 m8 c" M
    积分关系代数
    3 A$ ~8 ^" w' K5 r# C- g$ C1 {1 ], V集成剩余格; P! x  j; K) Y! |: q
    直觉线性逻辑代数$ U, P: W+ |) w) x1 A3 r
    逆半群; }  k% b# j) L# r. ?6 v% [  w
    合的格子' K0 c, o  z. P" K8 a) F, Q! I
    合的residuated格
    ' h5 K- l. J, ^- D0 \2 M0 [6 `9 G& Q加盟semidistributive格
    + |% @" W& X5 q7 W5 I3 [加盟半格
    2 E( p* g. @' q3 u6 x6 J( }约旦代数
    # n! _' `" \5 ?: G5 ~: q克莱尼代数: c+ l) T- D# T5 y$ `% V5 X
    克莱尼晶格9 q& ]1 }# Y9 \& X# u5 m
    Lambek代数4 C& ^& s5 U5 K' k: ]$ V2 H  z) o
    格序群
    * p3 S. u5 x0 f格子下令半群
    3 U  `' A# Y5 g1 N; _7 T+ X; A格序环; i0 |: y) A5 V. X0 r; @: K
    格序半群! {, t3 }+ P& ^7 m& M7 @8 q0 Y
    ! U; w6 n$ Y! C1 ?3 N  W: q
    左可消半群
    ! u: B* G- L( [( `5 D李代数
    - a1 M; o) c0 w# B* r线性Heyting代数( W5 `. T% G- a; _, y8 [
    线性逻辑代数2 G2 i# A1 K$ V
    线性订单
    * L9 `6 F) C: `  @/ t+ P5 d语言环境. W5 y# P$ w/ q0 |
    局部紧拓扑空间( H6 _' }/ o! r- `' p5 l2 `$ t- h
    循环1 Y$ C2 |0 O# F9 p& K
    n阶Lukasiewicz代数% R3 J! t, _- O+ L4 y1 ^2 P1 v
    M -组" e! e2 W  C' D' u" D) d/ Q' f5 N
    内侧groupoids! {3 p) _4 d+ F6 y+ x2 v8 j
    内侧quasigroups* |, Q2 T( z8 l9 S5 Z2 `* [
    会见semidistributive格0 M8 ?1 F" `. V. c, @9 P0 H8 e
    会见半格/ ]$ s  J  S$ W: f: @/ p6 c. F
    度量空间3 c4 O  `' T. P6 q1 A* A
    模态代数, M& d$ \2 g2 ~& w9 z8 m
    模块化晶格
    * n( @; j* X% `. I' J. ~- Y6 ?6 `模块化ortholattices/ f( E2 D; a4 q' @
    环比一个模块# u5 W# [( t: T5 G. M! ~5 Z
    单子代数
    ( o* e. \8 U( c% bMonoidal t -模的逻辑代数. s& N, h/ O6 `$ _- O
    幺半群,有限半群,零
    $ k. V+ u. |  p8 W& R$ W3 b0 S% m6 _Moufang循环
    . t' X: K% ?. X6 S9 W, FMoufang quasigroups
    * T+ c, c8 D% Z' @) }  A乘添加剂的线性逻辑代数5 E" _9 c4 g* H/ V5 F
    乘晶格1 Q$ J. R. O) v8 G- I9 e( ?! n
    乘法半格3 ]' g  ^& u5 n- C. ?# ~; {
    多重集" L$ E2 g7 }! S( i2 m  x+ C
    MV -代数
    # o) q3 A6 X  _+ F/ eNeardistributive晶格
    , A; R2 d7 U1 C6 I: W$ u! l近环. U5 s& H' ^$ I) M- e; _2 G
    近环与身份
    - J, E/ @: n* D近田8 S4 e  D" O7 t
    幂零群
    5 B& _4 T: f: E) ^2 U( S+ a非结合的关系代数
    1 ]; a- D! L$ X/ [8 V/ ~6 }非结合代数
    ( d5 x& F; ^0 z" {8 V; @; \普通频段
    - g! N. T8 m1 }2 b7 m% E正常价值格序群
    5 P1 K- E1 ~4 v/ J% }+ z; B赋范向量空间
    2 M# [: h: f2 E" O( u奥康代数
    3 n7 ]1 e* b( ~订购代数2 c* D0 j' C( \) O  P
    有序阿贝尔群6 T* S0 n6 Q( {( p4 F$ P
    有序领域
    & a3 p" u* W( E6 j7 ]+ M1 y- M序群
    5 M# i: A, K' [+ t有序半群) _# z+ Q2 `: }& P
    与零有序的半群
    2 B" a9 e4 S. s' K- F有序环
    7 t# y, G* o, G# ?5 R) B序半群,有限序半群,有限下令零半群4 q% s& H7 q+ i# Y" d' \
    有序半格,有限下令半格" v* K8 b3 p! j) y# J8 k7 A. r" B
    有序集# z0 l! W. h) [% A+ n6 P. B! E- {
    矿石域
    . Z7 Z0 A/ @: N& jOrtholattices
    9 p% X- j! [5 H正交模格
    # i4 s' O% E1 E* i+ v1 h; l# rp -群
    2 l1 O0 Q+ Z& U) i, ~0 _部分groupoids
    * w$ s6 I$ L5 Z6 T4 P! X部分半群: E0 X& T3 {( [) E. c
    部分有序的群体
    1 N, L5 q5 l" |' k+ e部分下令半群
    + i0 A% J# J# z: _部分序半群4 g9 S; l" D. z! t
    部分有序集2 @) r, A" |7 ^: E7 ^5 K/ k1 Y
    皮尔斯代数8 }! j: m4 P& b! _3 f
    Pocrims
    ) c/ E. B' \. E- |0 E指出residuated格- q9 m' H3 P5 p4 g6 K) p: X
    Polrims/ ~2 ?; @8 i( w' m" d7 ^
    Polyadic代数
    ) d' N$ ^* n$ P' K6 |6 [! ?偏序集- S$ a6 z* Y! b. _3 [! F, O' j
    邮政代数0 E) `' H5 Q$ x1 O7 _- M: d
    Preordered套5 V( ~7 }0 w. K# A* d3 W
    普里斯特利空间& V4 a% X- L/ w
    主理想域
    # w/ G" B# ?  a5 J" H; `3 O4 m! N进程代数
    * [. y6 p- ^1 u' G; T: P/ T: K伪基本逻辑代数3 X. E( }  z3 j" f  c" z3 s
    伪MTL -代数
    4 Q% T, Y5 Z& q伪MV -代数! C6 ?0 W+ J8 ?8 p9 C/ }0 w2 F
    Pseudocomplemented分配格
    - l( w: _4 ~. @/ e纯鉴别代数$ Z/ W3 X. c) L# y4 |
    Quantales, Z' \5 }$ B0 p# L' B
    Quasigroups* y$ H) o- s" O. Z& ?$ m0 d
    准蕴涵代数
    ; _* e5 T% b- k准MV -代数
    , c. r. m! F% |& Z准有序集
    " P0 b2 [" R& R  e# ^4 B* dQuasitrivial groupoids) p9 u! _2 I% U: ?2 U
    矩形条带* i# q8 F! T4 X) X9 J# T
    自反关系
    3 ~. l" d. N, F: v. g# y7 Z正则环: v8 R9 ]2 L: H3 S  q
    正则半群
    2 ~0 v- `/ @" f& T  b4 Y关系代数& ^# {2 {, n. B8 D" S6 h# _
    相对Stone代数5 u/ |  o* q& o- U! J1 c. S5 V
    相对化的关系代数
    1 J& `+ g  r# `3 t! V表示的圆柱代数
    * b9 t5 K2 G! J8 }6 `6 E& g表示的格序群体
    3 W0 r- B2 Q4 r5 c; C: j表示的关系代数; d8 I' e# }5 |
    表示的residuated格
    , C- z& _1 r- X# RResiduated幂等半环0 E7 ]* B2 U: A# G5 f" Q
    剩余格序半群( R- X/ C5 }4 |7 Q
    剩余格, _% ^; j8 [( }
    Residuated部分有序的半群% ~& T5 N) H/ c/ J1 I2 A
    Residuated部分序半群9 z: p. ~; d1 t  k
    戒指8 Y6 X* B4 H7 g" c& m1 }2 R3 r
    戒指与身份" R6 S# {* ]0 c  c! r% W
    施罗德类别8 K* \+ S  W! J' f( e% P
    Semiassociative关系代数
    # Y* L- u6 ~: i; g: I' ?# b% zSemidistributive晶格/ F$ U5 M7 u5 ?
    半群,有限半群
    0 Q: V. I6 j" N9 D# ?6 x8 g9 ]8 [半群与身份8 q4 x" U- m1 q: S* K! O
    半群与零,有限半群与零) H( |. p& K' k/ K: \
    半格,有限半格
    8 b! v5 C. c: B与身份,与身份的有限半格半格+ H  ^& v) a' Y. Q
    半格与零- o# j! _) {2 W; l- k0 n. D
    半环
    - {6 Z9 G  f4 H8 v半环与身份
    ( X( p! S- l- N/ K0 Y  c5 X; P% O半环与身份和零
    ! y1 f+ t; w  v/ b" D半环与零
    ; ~* z) U4 X' ~$ V" R* p连续代数5 L4 o9 e4 L  X  A

    $ Z2 i4 G8 c  f0 q6 ]' `" z/ K7 N% F; Z
    歪斜领域% r1 a* M7 v1 c3 S+ f8 d2 \
    Skew_lattices  S( C9 b0 L, @# T% w
    小类
    5 \, u5 Q0 P: R8 }/ {清醒T0 -空间5 S0 C6 {1 x, ~% k1 d; j
    可解群
    , [5 E4 s" z' G' J8 o, TSQRT准MV -代数3 i( A4 E" t# a& n  y6 d
    稳定紧凑的空间
    : R; `3 c) V1 i* \, y9 h施泰纳quasigroups
    5 f  `# ^9 ?2 j5 m/ I3 vStone代数. h2 U5 \8 s$ H
    对称关系
    " Y. Y4 e; [- e0 }8 b' ]( JT0 -空间, @# H3 Y6 }7 }$ {" n# x* m
    T1 -空间
    1 z7 m2 e! o( N$ P% J, ~# ST2 -空间$ y) m! i, f0 @! P4 K
    塔斯基代数( s9 i8 u3 B5 [# z/ o
    紧张代数
    ' s$ q0 G/ q" \时空代数
    2 H, Y' o+ M! O" f# b拓扑群
    6 I! }- f. p, ]0 }1 }/ j拓扑空间0 X4 p" N8 c; c( s$ S  g4 Y
    拓扑向量空间1 n+ v$ F! E6 b- x
    扭转组2 E9 k8 O8 r: t- i- P# ^( q
    全序的阿贝尔群
    , q+ B/ Y+ p8 h* M8 B全序的群体
    7 E; D$ W2 ~6 R( u完全下令半群
    - }# z! _$ c: n  UTransitive的关系3 k% S! i; l% Q% Q
    6 m" k% ~- p, |4 ]# o
    锦标赛
    : R: F! v- F5 M! ]& {: C一元代数9 b( d, h# z2 f2 _, ^& g- T! D
    唯一分解域' A! [5 [: O5 `& C! Q2 ]' k1 C
    Unital环
    1 G' g9 |& I9 L( q# t向量空间; r; O. Q5 P% c& M% k! T* M
    Wajsberg代数
    1 M) Q- e1 \- k- e. ?: j7 c* aWajsberg箍
      ~5 ?: p3 }, r) }: Q弱关联格7 p$ `' p4 ^" x/ }- W
    弱关联关系代数2 O# z. |  ]% L/ K
    弱表示关系代数
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-7 07:09 , Processed in 1.649277 second(s), 81 queries .

    回顶部