- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
 |
4 n; W' j' H! {6 h8 p; k' X" K2 R9 f4 V) d$ ?
Abelian groups Abelian group
" z3 x( p: N5 L: s; ~, TAbelian lattice-ordered groups/ j- o4 J1 S" ]& l7 E
Abelian ordered groups6 V9 I2 s! \5 ^
Abelian p-groups
5 K4 A( j( H, } ?Abelian partially ordered groups
7 Q; j5 ?9 m5 t) i& y* d$ f OAction algebras Action algebra3 `. O' Q- i. o
Action lattices* J+ a, Q6 T3 N. {& b, s/ e! V
Algebraic lattices
- d; t( M3 ~1 k, i. Q: f/ E( J8 LAlgebraic posets Algebraic poset
! d5 j; ^0 s! a2 J- P: D8 v1 @, MAlgebraic semilattices+ b# `- J1 \9 W
Allegories Allegory (category theory)6 }; R+ f! T* s5 i. L( `4 Y
Almost distributive lattices
2 F8 X. G M; p+ b/ o& D3 PAssociative algebras Associative algebra7 e2 U: b( M) j
Banach spaces Banach space, t; t; S u" D& E; R0 h* f" ?: O
Bands Band (mathematics), Finite bands" f2 l% e3 s: u: Y) X0 i6 K/ v
Basic logic algebras
$ W" o# I& J" @3 U* x; {: J" M* `BCI-algebras BCI algebra( d/ o5 t7 U5 x O
BCK-algebras BCK algebra
3 U9 ]" i. ]6 e7 m4 O. N! i# J6 |BCK-join-semilattices: B# G2 j8 v. z. k
BCK-lattices: u2 y! v. F7 P2 s
BCK-meet-semilattices
- @) w3 H5 f9 GBilinear algebras
( c% B5 D! }" o0 I0 W/ m8 KBL-algebras
$ A/ G% i) K' D* Y; v: X+ l( SBinars, Finite binars, with identity, with zero, with identity and zero, 4 o6 l2 Q8 B8 W3 k/ T& j
Boolean algebras Boolean algebra (structure)
1 w; H: h U; s5 t/ N' j, z; _# K6 NBoolean algebras with operators
) t! }5 ]" L6 v6 fBoolean groups
X$ B! k6 G: g" n/ I" Y5 i HBoolean lattices
4 P! W& m% d6 D1 |* u2 F @6 I, K! y2 \Boolean modules over a relation algebra
% ~7 q1 v0 j- _2 {7 B2 `& YBoolean monoids" J7 V# I& Q3 A4 ]) i3 M( H
Boolean rings4 p1 o. _" N! I
Boolean semigroups
1 ?- T- t' q9 d* z( f! x8 UBoolean semilattices- b( F5 k. x: n. B ~ b8 ]# L9 P
Boolean spaces, k) B: R. P/ L% S$ R) k
Bounded distributive lattices
+ y F: z2 y8 d- z/ T; ?5 QBounded lattices
! M1 h; v' k$ O, TBounded residuated lattices
; r/ f: s0 K# k$ h/ ^ {7 Y' hBrouwerian algebras
- j& c$ L; b, m* f- K. ABrouwerian semilattices7 `1 q( x, o" r8 p: |2 q6 \
C*-algebras* Y& _0 Q, j% K0 ^- T) B
Cancellative commutative monoids( H7 ?! L8 h! h$ }! u4 y/ Q
Cancellative commutative semigroups
; a5 |. f+ b+ L1 T) ^# sCancellative monoids4 }& [# p/ X1 s: T7 G
Cancellative semigroups( o5 b4 o" I) b+ s( y' ~3 i m, L
Cancellative residuated lattices
# ~% m+ M4 y% K1 N6 bCategories
. ?0 o3 q6 v* ], R S+ AChains/ }1 R0 ~& A& O( R" W
Clifford semigroups, I$ G. w# m8 H+ ?! y0 V0 v8 R
Clifford algebras
% W# A% G: {3 u9 j7 d( HClosure algebras8 A" G& T1 u' c A2 b2 A) U: K- ]
Commutative BCK-algebras! m# r' \+ `9 k( K1 ]) ]9 _
Commutative binars, Finite commutative binars, with identity, with zero, with identity and zero
; i. [" V3 b# h, s( v Xcommutative integral ordered monoids, finite commutative integral ordered monoids
4 ~ M" [ z) ?$ `! aCommutative inverse semigroups
. F$ ]* M& a+ |. R0 JCommutative lattice-ordered monoids
9 K# b2 D# F' |Commutative lattice-ordered rings
- |8 s9 d" A- S1 w* h% ACommutative lattice-ordered semigroups
; i- j# q5 v3 i+ r9 P4 oCommutative monoids, Finite commutative monoids, Finite commutative monoids with zero- _1 T @/ N" ]' x8 P) _, b# L5 Q
Commutative ordered monoids
- _4 {6 Z+ D0 l) n3 M1 KCommutative ordered rings6 _' A: R) B9 n, v$ i; _
Commutative ordered semigroups, Finite commutative ordered semigroups* O6 B0 ?: S1 ]
Commutative partially ordered monoids
+ O5 L: a# g! H: c+ u0 d2 |Commutative partially ordered semigroups
0 f5 h2 o5 w$ SCommutative regular rings
$ Q- v( T. _1 M7 [1 UCommutative residuated lattice-ordered semigroups
6 l% M! x; t" C2 E$ }Commutative residuated lattices
1 w/ m5 t J, B7 ]" tCommutative residuated partially ordered monoids, `! s; E3 p. p8 I0 Z& {6 d5 \
Commutative residuated partially ordered semigroups
: m$ S3 ]2 a5 w3 PCommutative rings- ? w2 B1 C& V- S, z* e
Commutative rings with identity
) e# b& ?( h; f1 KCommutative semigroups, Finite commutative semigroups, with zero
( y3 ?# s2 b2 H$ l8 \Compact topological spaces7 i9 v6 c3 J$ k& d8 Y/ r! r
Compact zero-dimensional Hausdorff spaces# Q( ~ W2 b# }! |0 k8 P: Z0 q
Complemented lattices
- F% v/ C0 Q3 [3 D: c V8 XComplemented distributive lattices
& ]6 b$ @( x3 E/ Z2 ^Complemented modular lattices9 }7 i: O: G; \ u- `9 \0 [
Complete distributive lattices
7 A( Y* R* {9 w8 }- \& q/ Y% Z) j* | _Complete lattices9 ]: K. G+ Z* L) @1 ^
Complete semilattices# x$ [+ ~' L. d) p) J
Complete partial orders
) k- o4 s3 v. e% FCompletely regular Hausdorff spaces3 ~- |, z9 e& o% l1 [
Completely regular semigroups
9 p4 h2 j7 T$ R9 d4 |, ^2 SContinuous lattices
6 v9 N! O- y- O1 iContinuous posets% v. X% h* f3 ^5 [
Cylindric algebras
' _' [- o7 r7 fDe Morgan algebras
# \" O8 F( g/ BDe Morgan monoids7 c; u; L3 `/ W1 u5 K$ i1 L
Dedekind categories
: T/ k. L. G% K4 L1 yDedekind domains
" n% {# Q' T$ C3 IDense linear orders
) C$ y- N# L+ ZDigraph algebras
5 Q$ \; ^4 x4 TDirected complete partial orders
$ K W6 l) m& u: m- [! m! CDirected partial orders2 t" W' _' V% U4 U4 ]
Directed graphs
3 f$ h$ A- n4 F) X: R) {Directoids
& x, ~+ o3 e/ ~% lDistributive allegories. z( r! \: q: @' Y
Distributive double p-algebras
( K4 f- H1 o0 f% jDistributive dual p-algebras% c# I7 i+ @& p7 e( W0 F# v/ X: M& w
Distributive lattice expansions
9 g0 L1 l: m! j5 U8 K/ x6 i4 [Distributive lattices/ z, [- f. }/ _) }. \- g+ ^& U
Distributive lattices with operators
$ s- `1 ]: z% e; YDistributive lattice ordered semigroups8 Z' p4 N% V2 u t1 Z) U# j
Distributive p-algebras! H" {+ T8 U/ g2 |
Distributive residuated lattices" \. H7 A7 g% L4 u: f
Division algebras
^/ I$ i$ W$ X ODivision rings
( }/ h2 L' \( V# R. G3 U) mDouble Stone algebras
2 C+ [3 v$ F; [0 }( A, R. uDunn monoids
1 Z: @2 K/ V, QDynamic algebras
' f$ F c' u* V7 Q4 x' i( {Entropic groupoids
, T8 i3 u! X9 ^Equivalence algebras9 u( G: T9 d) D( E, V5 f* F) N0 p
Equivalence relations$ X/ b# S4 z- S
Euclidean domains% ~% \" J" y% E( c$ y
f-rings) F, _& D. p# w: b
Fields
! `) B/ \2 E* s: q u9 D3 }FL-algebras! o. c/ Q% J/ C. G7 S; a2 j- H4 Q- G
FLc-algebras' s. r# N) B% p: |' L6 c6 X2 ~7 p! p
FLe-algebras
! j2 t$ m* E, v# `7 @2 t4 f- v5 Y) UFLew-algebras
% O0 E# G9 C; y& f0 ^- RFLw-algebras. [0 P+ N+ X8 g
Frames
- O4 H1 M* n$ [# ?6 ^8 FFunction rings
6 n4 a) [6 O. y& ^4 CG-sets
, U! |2 u: [/ X7 K+ KGeneralized BL-algebras& k& t$ S) D5 m1 q4 i' \4 Y
Generalized Boolean algebras
; B f* M' D# XGeneralized MV-algebras
9 s4 G- M1 R3 T) @Goedel algebras
) p# R" `+ O5 H. B4 \Graphs/ W+ W$ V e! ~& B+ c& P* R
Groupoids2 Y2 E- j- @2 a
Groups
. V; P0 I: ?" y3 k2 gHausdorff spaces4 _7 _ v4 t9 ?# @& L8 ` R) r
Heyting algebras! _) g8 y3 T' E/ X5 [5 e4 k
Hilbert algebras
' R# \3 t" x4 M, {& J' [% PHilbert spaces
9 C ?2 c+ r8 z0 l3 Q+ EHoops" L1 ~4 j/ s. T( V! T
Idempotent semirings
/ A# M( q1 l" p. n4 B6 }& _' gIdempotent semirings with identity
9 w! M1 e5 B- w8 n0 ]Idempotent semirings with identity and zero* z; D) u- d) p. m3 c
Idempotent semirings with zero+ y& b9 W' D2 R/ x, t% Z6 E% |
Implication algebras4 f# Z6 u7 B5 @( n* H* J
Implicative lattices/ d0 c$ N) a3 \) N, \' b$ e9 u% c
Integral domains
2 z& I# y. A* vIntegral ordered monoids, finite integral ordered monoids
1 P7 l8 i' T: |% L" b2 fIntegral relation algebras% l& j1 A( o. D
Integral residuated lattices
$ I1 b1 j% j% F6 X6 k5 c% QIntuitionistic linear logic algebras$ h+ _2 Z5 W$ l/ f0 O" g
Inverse semigroups
! \! o+ J d: j; A+ Z. t5 H5 [Involutive lattices
. ]6 Q$ [% \1 x; h+ i0 n- c5 gInvolutive residuated lattices- q% v" `3 z6 F' T$ F' g$ T0 f
Join-semidistributive lattices
5 s( n/ _) r+ h5 K7 X6 c( vJoin-semilattices, L+ h t6 D' J0 y
Jordan algebras
* h- d) F5 T/ C" T" @Kleene algebras
; L' B* R0 o- _1 p. ~* MKleene lattices
# I4 }' y# g/ _1 {: LLambek algebras
7 d2 m3 w5 K; e8 p/ zLattice-ordered groups! P5 {" i, U6 D$ k) _8 L
Lattice-ordered monoids
+ x$ Y) t' E/ x* rLattice-ordered rings, l E/ i0 v% G# ^; X; k
Lattice-ordered semigroups- ]$ e" |2 K$ J
Lattices
( L( p0 ?+ U8 ^- q" ^8 jLeft cancellative semigroups
+ x" P, _3 Z; v% |Lie algebras
4 `4 z: n4 g9 h6 LLinear Heyting algebras
% }2 H% a6 Q$ E+ L7 A0 GLinear logic algebras1 U, h: ]) G/ y" H Q2 R& h! @
Linear orders+ W a. {- F# T8 v5 c9 [
Locales5 `! v/ Z) `' w2 r H
Locally compact topological spaces
5 u2 l2 d0 `+ i# nLoops
& \* K( }0 ^) S9 c* l& v- @5 i/ sLukasiewicz algebras of order n
9 B! d4 B6 H. ^$ i3 kM-sets
7 e) o/ V0 V( H( J4 J4 ZMedial groupoids: Q6 h# A! |! I* a \" a. \
Medial quasigroups1 g$ l$ p0 e9 Y; U0 c. y
Meet-semidistributive lattices1 @: Y9 M5 U/ a i( ?
Meet-semilattices
3 u7 u. r2 J9 R6 ^9 E: ]Metric spaces
( Q+ f! p& I$ uModal algebras
( s4 x$ p* E8 v* R, A8 fModular lattices
4 I# W. I# z% U. x: a' I% KModular ortholattices3 z* Q- U ?/ } r2 u* z+ d3 ]) a
Modules over a ring
: V. l: | W' W+ X `4 O( _Monadic algebras2 x, [' A/ X( Z; Q# L
Monoidal t-norm logic algebras, o- ]$ g. c _) x" X; H
Monoids, Finite monoids, with zero2 q: A2 G! K( x$ u& Q6 Q
Moufang loops
9 |9 s; p4 H+ I- b+ a% TMoufang quasigroups: c8 Y' o: c8 b9 X$ i1 W, Z
Multiplicative additive linear logic algebras% J+ z" d2 h8 Y% u( B7 Y
Multiplicative lattices E, `' n0 z5 F6 p: r! p. j
Multiplicative semilattices
* f0 R [! y1 W3 L# H# b2 j+ M {Multisets u' o2 `1 M$ j, T
MV-algebras
( ?+ z5 H! F A2 Z5 @Neardistributive lattices
. b6 k5 v) {, m3 @, yNear-rings
$ t6 }# q0 t& {' jNear-rings with identity* H; `+ X& [ \$ [
Near-fields
y& _2 Y7 M5 r& uNilpotent groups
* B e7 F+ d @3 [1 e+ hNonassociative relation algebras0 v- n3 l6 z6 {5 }
Nonassociative algebras( A# l4 r: P( K* D" R, o1 {/ k
Normal bands) f) _/ V6 Z" Z3 _# ~
Normal valued lattice-ordered groups" L$ [. p" ^4 S7 k7 j; j
Normed vector spaces
5 ~6 V3 ?: n" T- a9 ~8 g6 ^Ockham algebras. N2 W/ E( `8 a, V' Z+ u3 G
Order algebras' w& f. f1 m; t0 d
Ordered abelian groups+ A) d. J1 \# E6 Y7 u- k! c" K
Ordered fields
) K! r7 u F4 |$ O4 yOrdered groups' k% {, e* S3 z+ q$ ~0 d
Ordered monoids
4 R* M2 B" ~- zOrdered monoids with zero
1 |4 K7 l" V2 ?" v% nOrdered rings8 F% c3 v* [( w( a2 K/ u
Ordered semigroups, Finite ordered semigroups, Finite ordered semigroups with zero k# U% @4 `2 g/ Y# v7 X3 K' {
Ordered semilattices, Finite ordered semilattices
. p. G8 V2 \4 l& |; [% k7 gOrdered sets
9 F$ I+ [9 A" Z8 N2 ROre domains) U! | }' o* X* k" y! D" w
Ortholattices
8 Q, z: J; f4 Q' l8 }7 @Orthomodular lattices
! V" Z$ L+ k: J5 Y9 ^5 Cp-groups0 W( G5 M. ~" w8 C( [
Partial groupoids& z" T' m! x4 o% Q1 f
Partial semigroups
% T+ l# y6 I1 ?' i" z- E( HPartially ordered groups8 N% x& B% ^% K2 a' `
Partially ordered monoids
0 j, W( C4 Y- pPartially ordered semigroups# |8 _' V. i( c: c
Partially ordered sets8 D# ]. f; T4 E0 {
Peirce algebras
- w2 f3 ^/ d4 h: U4 |Pocrims0 [3 a/ _( i" F- a) a0 u1 `! l3 S
Pointed residuated lattices4 {2 ?- v8 t$ E8 | _9 X; v
Polrims
7 U; {$ J" |7 z% ]: MPolyadic algebras
?3 [/ K( h+ z& z+ PPosets
0 D: ^/ x, e5 y) wPost algebras) i8 V. I V4 Q
Preordered sets
! X" K) ^, g6 K6 kPriestley spaces) R/ g& h3 ?, H1 d3 L! z8 g$ A
Principal Ideal Domains y |4 ~" f# |% V/ q6 W
Process algebras. }0 N1 h! _6 \4 q
Pseudo basic logic algebras
+ a8 W& f+ R# T' g* hPseudo MTL-algebras6 P$ l; W; z( U* A+ f9 o# O% i
Pseudo MV-algebras2 u4 o4 T1 \6 Z r, s1 X, p# b
Pseudocomplemented distributive lattices6 u5 X, a# w- }4 A s
Pure discriminator algebras
' D% {6 t% h8 _0 C8 zQuantales) U X+ Y6 ]0 _( ?; y2 G- U
Quasigroups
$ }: L8 x, T) i7 a8 eQuasi-implication algebras. o2 n n7 M) Y) S
Quasi-MV-algebra% Q6 y( L3 j1 d& P _
Quasi-ordered sets
+ z6 n2 A3 Y; ^/ m% VQuasitrivial groupoids" u! t& v5 U' ^* @
Rectangular bands
3 ]% G+ E1 V1 R' ^3 v3 n& ~2 z. EReflexive relations
0 H, @* u" g4 @& zRegular rings- m6 S! R8 p9 C/ b& U$ Z5 \
Regular semigroups/ U c z, {& M2 s4 P4 D8 ?/ e
Relation algebras5 S& U/ K. Q4 M: F4 s& k+ b
Relative Stone algebras* x3 N! ?; V0 {0 @4 ^2 j
Relativized relation algebras: W1 I$ g- [9 x/ D+ `" ]; e6 G2 G
Representable cylindric algebras
3 y! R* f0 E/ R. g+ c8 g& U) LRepresentable lattice-ordered groups
S2 Y8 P3 y* B: D' i: yRepresentable relation algebras
. a6 ^2 R1 y4 m' `# M* D TRepresentable residuated lattices( G/ c) z% n1 F
Residuated idempotent semirings. D; v( I- C+ J8 |: K* F' h
Residuated lattice-ordered semigroups# \" s: w) P9 d( R" V; p6 a
Residuated lattices& B( r8 _' B$ U, p1 z
Residuated partially ordered monoids' `6 t3 V7 f/ @( D9 h( f: n
Residuated partially ordered semigroups- L b; R: q! t
Rings$ z7 V0 u" ^/ k# [
Rings with identity/ x5 @ r. s7 [0 t1 G: `
Schroeder categories
! c1 m9 R; M, \0 ^- RSemiassociative relation algebras8 i# p; N. ~& b; j) c$ m
Semidistributive lattices
3 [& H' \% J; @/ Y6 U; u4 d# q( USemigroups, Finite semigroups& l: \: P1 i$ P' C5 B( o+ g$ \
Semigroups with identity9 L& |$ H$ N, |0 F$ \% a; a% _
Semigroups with zero, Finite semigroups with zero4 J) x3 j2 d" [
Semilattices, Finite semilattices
( u2 F6 H" P4 f/ rSemilattices with identity, Finite semilattices with identity
& N% T3 W% [9 FSemilattices with zero ]% c7 r1 I6 f. e$ j; Q
Semirings, e& q1 K0 H; G) Q' q- k, l
Semirings with identity$ s+ h1 M+ L8 X
Semirings with identity and zero
5 Z. B& T3 T' [0 p3 o; f# fSemirings with zero
1 o- _4 u: s2 ?Sequential algebras
! o9 R9 M! Q) P: I) L, \" WSets
0 f/ v+ A2 }, l7 M. uShells
% {9 g+ f1 j8 x2 A* z& r+ [ Y0 NSkew-fields% O0 I% X5 |0 b2 ]% E
Skew_lattices
( L l8 d7 F, B0 fSmall categories" d, J0 R5 B5 d0 u
Sober T0-spaces
+ K/ ?- [! T. \5 W7 @ RSolvable groups
3 x2 l* L1 Y* n9 m- P# B. WSqrt-quasi-MV-algebras5 J7 S( y# h. d+ A
Stably compact spaces
% v" T7 n! i# @ h: v, V" I! }Steiner quasigroups) V+ K. N8 G. B# x3 P
Stone algebras w- L' B3 ^* }, H
Symmetric relations+ ^* W h/ x8 h* Z5 m. v6 [
T0-spaces4 q8 }8 O5 p7 Q, Y2 s
T1-spaces4 i5 Z3 {. D0 V5 o0 U9 h0 W5 r' |0 x
T2-spaces
: P& l- l# h: PTarski algebras
$ T6 F5 g9 T6 c4 p5 D4 gTense algebras- y$ ?1 J+ \: P5 Q2 g0 a
Temporal algebras
+ r. e$ Y3 a. e2 j* D9 a+ B& kTopological groups
+ J2 n; Y+ [0 wTopological spaces
8 {6 i1 B& C6 B( F: V! W; n! lTopological vector spaces
. x& |6 ~( e G% D7 nTorsion groups- N/ n J& [- r
Totally ordered abelian groups, R; M. N7 D% P$ M
Totally ordered groups, }$ c. [3 X9 m- r
Totally ordered monoids
+ }* x, a3 n" o+ o, V1 P" h& ^Transitive relations
) V1 }& [ o: H; d$ WTrees
6 [$ `1 n* W& K# ]. G3 @8 kTournaments0 [; o* s' N5 V: {0 \) g
Unary algebras
! D3 w/ I! N$ q# ]# I0 I, K# X7 ^4 iUnique factorization domains* ]7 {; c) |# E
Unital rings
" Q8 V$ o! i% _% c YVector spaces
/ t3 U! Z1 g6 q% k) MWajsberg algebras
. \ E G' D% {) c% V {$ pWajsberg hoops
( G$ }2 t+ z" ^0 V. oWeakly associative lattices
) [- I+ s* x+ K8 R5 p+ l0 gWeakly associative relation algebras8 n- L6 u: a( e' g$ U! M) y
Weakly representable relation algebras# z8 G; g ^' D* \+ Z2 f/ g1 N
|
zan
|