- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-
' j! B! d, B$ c* ^5 w6 r) d8 y F! q( k) Q6 M7 |1 X; E
import math
/ I. _( B# X9 k [# A7 Ximport sys+ H. H' Q6 {! G& K) N; B+ b6 W( Y
from texttable import Texttable1 z2 S1 |3 J* @2 o0 m$ W
3 A4 o' a3 F5 t. G! J9 {
: p6 c/ A) _0 @9 [
#. u( n& a7 b% e/ ~
# 使用 |A&B|/sqrt(|A || B |)计算余弦距离
6 p$ v# m# g, d8 P1 Q#; [5 t9 y M6 Z& u, Y9 _
#, a+ \, p$ o9 q7 g4 m/ U8 l: H
#
' E" i2 v% ?( a+ `def calcCosDistSpe(user1,user2):
2 m2 U" `2 @% ? G; K/ M$ h, j avg_x=0.05 G# I& e. C- a
avg_y=0.0% u1 ?9 U% z/ U/ Q- N1 r+ H
for key in user1:
' p/ W# `0 Q3 p% @4 }- C avg_x+=key[1]
4 G* l) ?' o) o2 F4 D5 N4 h avg_x=avg_x/len(user1), R; ]% G" b: B
) P! ~0 b3 f/ |5 L6 A- e: M; R
for key in user2:8 u' e9 X5 \- H
avg_y+=key[1]
% G! p9 W5 r: \5 D A5 S! _7 g avg_y=avg_y/len(user2) i' v$ {3 S8 w
2 B6 v: d* `3 c* {
u1_u2=0.0 R3 L& f% u1 _1 }9 M g
for key1 in user1:# z) Z O$ e" @6 K) [& F& n6 ?
for key2 in user2:% e" x1 d8 a s
if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:
: |; z( X$ |6 r* I, G) [ u1_u2+=1: W. y7 b4 d. S
u1u2=len(user1)*len(user2)*1.06 G; x9 p9 a6 c- r& W' x
sx_sy=u1_u2/math.sqrt(u1u2), Z; d0 C5 ~8 T6 y) C1 E. h, S
return sx_sy
( \6 c& E' A+ N; M* S7 s% _: v; w5 s p
+ A$ e* f- p$ ^# X" K( H1 i# p. A#/ {+ i" g B) X- q* J
# 计算余弦距离# M x# d6 \# m) e N3 i) s
#" @& |9 `+ S* z* x; l% b
#
, H9 C) j6 O8 pdef calcCosDist(user1,user2):
) ]* R3 u( V& ^" _, ], h* q sum_x=0.03 S) _. Q( L" }
sum_y=0.0/ P0 R& t6 C0 {8 y. ?
sum_xy=0.0
2 |- i0 T1 v( [: {. u for key1 in user1:
( f& M+ V6 A, s3 n% c for key2 in user2:4 D9 t) L" }3 w; C, c. v: p
if key1[0]==key2[0] :+ b4 }6 |% }2 T* d1 B& I* @0 [& m, g
sum_xy+=key1[1]*key2[1]8 w: z. w( e6 h4 @
sum_y+=key2[1]*key2[1]
% ^. ? Q; S) a% l2 y1 G3 W# P- t sum_x+=key1[1]*key1[1]
_6 |, @- ~- J4 C. o + t3 P" M+ ]6 S- W
if sum_xy == 0.0 :" H% Z. M7 f% v6 F* u/ Z# a
return 0
; I R/ Y2 ]. l sx_sy=math.sqrt(sum_x*sum_y) / A* a9 P# c/ P3 }: d* J
return sum_xy/sx_sy
6 r1 K8 B: x9 \$ G/ z. B: |
1 b! a0 n: p# Z' a+ d' y" O8 M' V t! d
#
1 r q3 @: {6 Z8 P2 g9 k2 q& Q% r#
; ?7 g8 E0 G5 b6 Y1 h# 相似余弦距离
- J& c! {1 }+ @% T#) t& G0 G) p, \
#7 B9 k/ {# B! C- j. X2 F
#
) I! r L! ^) [! |( Vdef calcSimlaryCosDist(user1,user2):5 _5 z2 j1 n; u0 g
sum_x=0.02 G6 y* u9 h* q1 r$ i6 R
sum_y=0.0
7 {2 d: h7 s' |7 T$ l9 u sum_xy=0.0 Y# J% w7 u# t m0 Q
avg_x=0.0
% ^' B, o3 z' w0 I" Z3 L( m1 ^. Q avg_y=0.0
( o4 n0 p$ z' i+ P- O for key in user1:- ?+ P5 V# q" J: O4 C! i8 ~2 ~
avg_x+=key[1]
" {) c! `7 I N+ ^( u0 N5 O avg_x=avg_x/len(user1)/ I7 p5 }2 y* j" a' C- j4 U$ D
. g# D1 ?2 m5 f$ x5 m& W
for key in user2:
9 d' k" ]1 A& r) p avg_y+=key[1]
7 s* N/ }" o# P+ z7 a! _3 n avg_y=avg_y/len(user2)
9 n+ x* ~. l& l* q9 s' m % ?" f+ h0 d1 ]0 s
for key1 in user1:- s& n; _$ P; M' c; r
for key2 in user2: Y' N2 N" M* I
if key1[0]==key2[0] : w3 P) \: L( M) h/ E+ m! e k
sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)/ Q" j8 I- W! g" s' H% s$ K
sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)
; D% A% j9 G: p2 |) n sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)) x, X1 F! g4 B4 N
! L ]( J$ c6 k& ?: L+ |( A
if sum_xy == 0.0 :
% Q1 x7 Y- H8 C! x* d return 0 `# l" {' p$ n( C+ M
sx_sy=math.sqrt(sum_x*sum_y)
8 e' d; I& b7 Z% s7 ?0 \! v6 }6 a# Q return sum_xy/sx_sy
& i0 \5 c+ L! r# M8 X: n: e
' r) A( m: }1 e) N+ q) }6 G. E! Y8 y1 b& W
#
# o+ n) x: s% C- Y" |8 j# 读取文件: U& I2 c' {4 k
#
. ^$ Q$ b/ r2 X#
% H: d! r' N7 g' q3 V6 l. qdef readFile(file_name):# g6 M4 @/ \6 b" F% U# S) X
contents_lines=[]
+ [, g9 I) N. O% {7 g f=open(file_name,"r")
/ X- B5 e) ~4 l0 L2 E' T( s contents_lines=f.readlines()
; V% i @& M$ P f.close()
1 }5 k0 f0 R* s) V return contents_lines
& D" C# v9 [2 ]/ k: K$ N8 o* Y. D6 l
8 N- A% }: [+ @5 C( s6 ~5 {, s2 S( O4 Z
# ^8 R4 h% i0 w# B; m8 B#
0 t0 c, _2 c/ l& B7 F# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间 L% Q/ ]; k/ V3 T
# 输入:数据集合2 O2 j5 E( _5 X4 A
# 输出:已经解压的排名信息
$ m2 K/ C8 ]8 V# @1 z% b4 U#
2 i6 R8 s8 f9 O |" I2 u: Mdef getRatingInformation(ratings):" C. N& l+ O8 e, S$ Y1 g2 v% z
rates=[]
7 j1 ] o* A$ E6 ?2 l for line in ratings:
3 T( L, L5 j5 _( r" V$ y: i, P rate=line.split("\t")0 \1 R2 P9 M C
rates.append([int(rate[0]),int(rate[1]),int(rate[2])])( l+ c8 U# q L) v. G& }
return rates
4 k8 g% \" B* |- o5 f
: b( x! \) Z+ o7 A3 J- ?7 M& B5 A4 U
0 p) x E/ l3 |; [9 t/ F#/ ?1 O2 B$ q/ l
# 生成用户评分的数据结构
2 h; N" ^( w" r# S! |# v. ~# 4 { r8 ^1 e9 w
# 输入:所以数据 [[2,1,5],[2,4,2]...]& ], g v9 V5 o* v( ~& n
# 输出:1.用户打分字典 2.电影字典
/ [0 b6 c* F& q8 l! @# 使用字典,key是用户id,value是用户对电影的评价,
, y3 l {* U/ Z: y" u' [, y. S# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是26 s( {' h5 d+ L1 _
#4 s% Y8 i' ~# x9 t4 E$ Y+ F
def createUserRankDic(rates):. D, ]8 B3 y) x( o# _, z* ?
user_rate_dic={}5 o$ a% M5 K! ~$ l- U
item_to_user={}
' F- V' a. A4 ^ B) `# d+ x; x' @+ U; Q( G for i in rates:2 \) j, M3 z1 b0 l& T% g4 q0 q3 O
user_rank=(i[1],i[2])
- K! J Y3 R9 v, J- q* ? if i[0] in user_rate_dic:
3 i% G W p! ? b/ ?: w user_rate_dic[i[0]].append(user_rank)5 \# u2 {; F9 L+ v2 L2 W: t2 y
else:
/ Z# p9 P3 X! o, w% t! \5 E user_rate_dic[i[0]]=[user_rank]
$ g# ?2 w) T' e 2 U8 ?# [# u* {& i$ X; Z
if i[1] in item_to_user:
g( M. e1 K1 A( B item_to_user[i[1]].append(i[0])9 P4 t( p7 q! \+ B: b& q6 t
else:
" \7 V; x# z- o6 w item_to_user[i[1]]=[i[0]]
: `' l+ d: `8 d3 {7 ^
x' I! g t, y: L return user_rate_dic,item_to_user
0 m$ R# n5 T! C2 T0 F9 I/ L% J6 R' Q1 P p6 p( J; q
6 o* s9 q; N) _7 H#% Q; p( A: ?+ `+ b* f, w
# 计算与指定用户最相近的邻居
( ^0 }3 H. _0 y; Z7 k# 输入:指定用户ID,所以用户数据,所以物品数据
/ \9 A; f, y+ |" K d- ]( h+ ]7 ]# 输出:与指定用户最相邻的邻居列表
2 n6 A' v& K2 `- E#
# w& E! `- U1 K, wdef calcNearestNeighbor(userid,users_dic,item_dic):
S/ H" X% o' |3 E neighbors=[]. |8 o9 W( n, E% v
#neighbors.append(userid)' @. z, R3 }* _% k( E+ M7 o0 S v
for item in users_dic[userid]:
. I' u8 M3 i; T( c for neighbor in item_dic[item[0]]:
- S3 S% g0 X6 |7 S6 {+ A if neighbor != userid and neighbor not in neighbors: ( {, A+ u2 X1 `, ~- I
neighbors.append(neighbor)6 x& Y* c; |' w' B% W# Z1 Q% T6 z
/ R7 G2 t8 v+ c- }! b) }" X
neighbors_dist=[]$ V% [' T1 q- x4 C; g2 `8 _& r
for neighbor in neighbors:9 r3 c8 b4 Q2 G& O7 j, i) E5 l
dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe
. H% `& R e! `/ F5 h neighbors_dist.append([dist,neighbor])$ t" [/ L- j5 c4 B$ L; D. G6 K i$ R
neighbors_dist.sort(reverse=True)
3 C5 S/ V/ U# ?; u# _) d0 \ #print neighbors_dist
# u% ~' u. p* r M return neighbors_dist) p2 s( n0 G$ }, ]5 m' m
8 s* \- W% `. }# c/ x
0 G5 G8 w8 v. W5 q+ J3 ?( R6 Q% g#
: `* @7 Y! A7 k3 z1 ~ U8 Q# 使用UserFC进行推荐
3 D3 K+ H' m: j- a. |' ]+ {# 输入:文件名,用户ID,邻居数量& \! N7 ]; t7 ]& M+ m* @
# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表
$ v5 J$ i6 R7 c: K# h, y1 E% B#
# q4 q% c# z( L& g- Gdef recommendByUserFC(file_name,userid,k=5):
, R' G. g! a2 V$ i7 j+ j+ h/ F
! o2 o9 r2 l9 M: S6 R) h W9 j #读取文件数据
- |/ ~7 D2 F2 n- z' O; T5 D test_contents=readFile(file_name)2 x; S5 a5 `% @7 V% k& G3 ?
+ D' Y; W f/ L
#文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...] & s" m- s- n& `5 m4 J
test_rates=getRatingInformation(test_contents)0 t6 L2 }% |' Y4 ]
6 x% @4 Y/ t- W9 [" H4 J6 {9 C #格式化成字典数据
4 b: J* g6 ]- _, |+ c # 1.用户字典:dic[用户id]=[(电影id,电影评分)...]
3 c0 _9 M, p# S # 2.电影字典:dic[电影id]=[用户id1,用户id2...]
- O! G. O( U- o& J. |3 L( t test_dic,test_item_to_user=createUserRankDic(test_rates)
" x% q+ g! x s: ~6 J% K% r
. Y- v- L4 b7 _" ~ h #寻找邻居$ ]+ v% d/ V" F' @& g; V, v$ O
neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]
7 Z9 h8 L( s3 }3 d+ s) F * Y; Z7 o9 V* s$ v# R- w. e5 L" Q
recommend_dic={}
# j. d# k K$ r, c+ d e for neighbor in neighbors:
& s1 E6 l, M# [, d$ K; f neighbor_user_id=neighbor[1]! {9 y+ @: u, a5 S3 Y
movies=test_dic[neighbor_user_id]
4 H5 x# G+ @% i for movie in movies:
, Q. A5 W4 ^, Y' V7 { #print movie- G9 e- L" R+ [+ Y3 ?
if movie[0] not in recommend_dic:9 K3 }1 p6 p9 l8 J8 G% p$ E
recommend_dic[movie[0]]=neighbor[0]
1 f' D% d0 [6 v6 }0 ^. @& e2 X else:# M# `1 r5 n" T& W2 Y" n* n7 I
recommend_dic[movie[0]]+=neighbor[0]# Y) B( n% a- \+ [
#print len(recommend_dic)1 r$ J0 c4 y7 O' r; t5 i3 D) m+ @$ E
% A2 ?+ G- R2 e- _: o, a$ Y #建立推荐列表) `, K" B1 W( a9 C1 ^8 D
recommend_list=[]) E0 w5 a: q9 d1 I' I
for key in recommend_dic:
% F0 h7 I! A. P #print key
5 r& d( ]- f* L% e5 X recommend_list.append([recommend_dic[key],key])
: l5 b& O4 {, i8 x% o : {9 q9 w: W3 R+ ^* O6 L2 ~
( k" ?8 t% C, V- l& F+ G2 G! k# _
recommend_list.sort(reverse=True)
+ Z" ]4 v5 l F: f7 g* q #print recommend_list) w) ^* Z7 `9 ]+ R
user_movies = [ i[0] for i in test_dic[userid]]
3 J4 ?9 B, m/ u9 E9 [3 c
7 a- Z; i. v7 P( C1 w) m return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors
. K3 H& J5 L" k * \6 ~$ w2 ]( S3 b4 q* f
- A* w$ | S$ H/ ~6 X6 T& X' x
1 ?6 d: Z' h% ?) F
#
6 [/ K9 k2 g6 c#
+ l! s' k! h: ?; V1 d# 获取电影的列表
! Z" Y( ^% l2 o5 c+ t, d#+ S/ x; P1 Y" U, n
#* }) ~/ m7 W# u( O4 R! ?
#
4 |; \. Y7 S- y* e9 mdef getMoviesList(file_name):" B8 `: u N, y/ B4 v( f1 K
#print sys.getdefaultencoding()- P# ^) w3 N% ^* c6 [- z5 \
movies_contents=readFile(file_name)
, z" v2 m z/ h+ T4 h1 j" ]$ \/ c0 d movies_info={}
1 a' T- w! J1 C8 F# Y0 y, { for movie in movies_contents:, ]. X$ ], |3 g7 D6 ^* Q4 ?
movie_info=movie.split("|")5 x2 h: J: T# p" T5 c' t3 M
movies_info[int(movie_info[0])]=movie_info[1:] m7 S$ \; F" \, b- G! ?
return movies_info: V, m) j, k2 J' r' f4 V7 P
7 G. ~5 S) f9 Q 0 {" e! v) `/ J
! J: D$ O' J/ ]9 Z1 S. @- ^3 b#主程序
' `6 z9 H( n" L; k3 G4 Z8 l- ?( [#输入 : 测试数据集合: D) b8 ]/ ]4 `! i: ~
if __name__ == '__main__':6 d2 ?$ ` q/ ]" ?! |% ]4 a
reload(sys)# f: u6 u' C3 p. k3 Y
sys.setdefaultencoding('utf-8')) C! E$ v T; n; H
movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")
0 P2 g; d0 y, ?& h4 w7 q G recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80): L- r1 S8 y& q- u
neighbors_id=[ i[1] for i in neighbors]2 J3 A3 S+ N' p2 K
table = Texttable()
. i5 y7 U& J! Q; s) {. O table.set_deco(Texttable.HEADER)
+ u& K& v# L: N3 p8 E7 i" b table.set_cols_dtype(['t', # text
' _ w+ ?5 Z$ W! N7 D3 h! t 't', # float (decimal)0 h j' u, C, f0 I" s+ @
't']) # automatic, `$ y8 b) V( O
table.set_cols_align(["l", "l", "l"])
7 Z" `) N1 n* V4 X3 p+ S7 ?- o rows=[]
4 d6 r( ^* D1 K1 \ rows.append([u"movie name",u"release", u"from userid"])+ b- t9 X' V' d, r
for movie_id in recommend_list[:20]:
3 F) \9 P# V2 v. ^0 T; O from_user=[]8 g7 \' e6 }* ?2 ~5 f1 t& d$ w
for user_id in items_movie[movie_id]:9 q9 v. X3 R9 z% b) }. V
if user_id in neighbors_id:
( p* l3 g+ h# e3 k! ] from_user.append(user_id)
% m$ i5 J, Q. q! w1 L rows.append([movies[movie_id][0],movies[movie_id][1],""])- Z2 f: N2 Q: \$ Z1 |( |
table.add_rows(rows)) M( e7 T1 O- I* v2 b
print table.draw() |
|