QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1649|回复: 0
打印 上一主题 下一主题

[建模教程] 模拟退火算法

[复制链接]
字体大小: 正常 放大

16

主题

13

听众

224

积分

升级  62%

  • TA的每日心情
    开心
    2015-1-3 20:49
  • 签到天数: 54 天

    [LV.5]常住居民I

    群组国赛讨论

    跳转到指定楼层
    1#
    发表于 2014-8-21 23:45 |只看该作者 |正序浏览
    |招呼Ta 关注Ta
    [p=272, null, left]模拟退火算法


    $ \: _& L* w2 r; O
    % h: Q9 O8 g$ y5 k1 W7 h+ w* _3 T- i# X; ]1 Y6 |8 Y
    [p=197, null, left]模拟退火算法来源于固体退火原理,

    [p=197, null, left]将固体加温至充

    [p=197, null, left]分高,再让其徐徐冷却,加温时,固体内部粒子随温升变

    [p=197, null, left]为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每

    [p=197, null, left]个温度都达到平衡态,最后在常温时达到基态,内能减为

    [p=197, null, left]最小。根据

    [p=197, null, left][size=197px]Metropolis

    [p=197, null, left]准则,粒子在温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]时趋于平衡

    [p=197, null, left]的概率为

    [p=197, null, left][size=197px]e-

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]E/(kT)

    [p=197, null, left],其中

    [p=197, null, left][size=197px]E

    [p=197, null, left]为温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]时的内能,

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]E

    [p=197, null, left]

    [p=197, null, left]其改变量,

    [p=197, null, left][size=197px]k

    [p=197, null, left]

    [p=197, null, left][size=197px]Boltzmann

    [p=197, null, left]常数。用固体退火模拟组合优

    [p=197, null, left]化问题,将内能

    [p=197, null, left][size=197px]E

    [p=197, null, left]模拟为目标函数值

    [p=197, null, left][size=197px]f

    [p=197, null, left],温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]演化成控

    [p=197, null, left]制参数

    [p=197, null, left][size=197px]t

    [p=197, null, left],即得到解组合优化问题的模拟退火算法:由初

    [p=197, null, left]始解

    [p=197, null, left][size=197px]i

    [p=197, null, left]和控制参数初值

    [p=197, null, left][size=197px]t

    [p=197, null, left]开始,

    [p=197, null, left]对当前解重复

    [p=197, null, left][size=197px]“

    [p=197, null, left]产生新解

    [p=197, null, left][size=197px]→

    [p=197, null, left]计算目标函数差

    [p=197, null, left][size=197px]→

    [p=197, null, left]接受或舍弃

    [p=197, null, left][size=197px]”

    [p=197, null, left]的迭代,并逐步衰减

    [p=197, null, left][size=197px]t

    [p=197, null, left]值,

    [p=197, null, left]算法终止时的当前解即为所得近似最优解,

    [p=197, null, left]这是基于蒙特

    [p=197, null, left]卡罗迭代求解法的一种启发式随机搜索过程。

    [p=197, null, left]退火过程由

    [p=197, null, left]冷却进度表

    [p=197, null, left][size=197px](Cooling Schedule)

    [p=197, null, left]控制,包括控制参数的初

    [p=197, null, left]

    [p=197, null, left][size=197px]t

    [p=197, null, left]及其衰减因子

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left]、每个

    [p=197, null, left][size=197px]t

    [p=197, null, left]值时的迭代次数

    [p=197, null, left][size=197px]L

    [p=197, null, left]和停止条

    [p=197, null, left]

    [p=197, null, left][size=197px]S

    [p=197, null, left]

    ( V1 l' L; w9 U; V

    - n+ i* `4 ]. b# F# B! v: ~3 O5 |) p5 ^) x% t, \: t8 f% |
    [p=197, null, left]模拟退火算法可以分解为解空间、

    [p=197, null, left]目标函数和初始解

    [p=197, null, left]三部分。


    " L0 ?3 t/ K1 u4 P& I
    8 t& Q% o: ~7 f7 O4 S0 M3 l) p: r/ k5 X. ?% _
    [p=197, null, left]模拟退火的基本思想

    [p=197, null, left][size=197px]:

    ! o# [6 x" J8 |$ X

    & A2 l, O2 L9 F) i! T[p=197, null, left][size=197px](1)

    [p=197, null, left]初始化:初始温度

    [p=197, null, left][size=197px]T(

    [p=197, null, left]充分大

    [p=197, null, left][size=197px])

    [p=197, null, left],初始解状态

    [p=197, null, left][size=197px]S(

    [p=197, null, left]

    [p=197, null, left]算法迭代的起点

    [p=197, null, left][size=197px])

    [p=197, null, left]

    ' [; V! @! ]* L" d% ?) c
    [p=197, null, left]每个

    [p=197, null, left][size=197px]T

    [p=197, null, left]值的迭代次数

    [p=197, null, left][size=197px]L

    - E3 H9 R9 S9 I  Q+ K& R

    2 ?" @) F$ y0 h! G; Q( i
    % O; D/ d2 z, o: V5 N& @6 K4 ]$ a0 F& e/ R3 {) S2 m$ [

    ! ^8 h  ]9 i9 B, D( \
    7 m' }6 T( H: Q% O2 {9 }% e4 n9 f+ p% X1 v" v0 r% d
    + g# U9 C6 O- }1 J: W2 r# `
    2014全国一级建造师资格考试备考资料真题集锦建筑工程经济 建筑工程项目管理 建筑工程法规 专业工程管理与实务' t# N+ \5 E0 ], l
    & ~" P6 p& Z. t6 i* I& u+ q8 y

    " a! E; E0 T* d1 R) V  w% ]
    . s6 g# J* c8 j" E1 w& X; {
    4 K$ ?$ G: A' t( o$ R0 v
    5 ?" \) `) \7 E+ K6 ]. f5 H( \5 F7 y8 f4 s

    ' ?6 G' m7 Q+ Z, b  c[p=197, null, left][size=197px](2)

    [p=197, null, left][size=197px]对

    [p=197, null, left][size=197px]k=1

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]……

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]L

    [p=197, null, left][size=197px]做第

    [p=197, null, left][size=197px](3)

    [p=197, null, left][size=197px]至第

    [p=197, null, left][size=197px]6

    [p=197, null, left][size=197px]步:

    , v+ m1 E1 \# _1 [0 P* ?% T" R

    2 T( w8 h; u; O5 m/ _& u) v8 v9 ?# r! m/ o) g5 y+ A$ ^$ ^: Y
    [p=197, null, left][size=197px](3)

    [p=197, null, left][size=197px]产生新解

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    / A% ~7 Q9 W4 v, w, o+ u& u( U
    ( `! U" X1 \2 o
    1 @: i1 {9 F) y' f+ T
    [p=197, null, left][size=197px](4)

    [p=197, null, left][size=197px]计算增量

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]=C(S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px])-C(S)

    [p=197, null, left][size=197px],其中

    [p=197, null, left][size=197px]C(S)

    [p=197, null, left][size=197px]为评价函数


    0 J5 Z7 P) d* h' C; W/ z3 L  M
    4 p6 d# l3 w; H, |6 F6 q! T9 m) o* g* m
    ( k; I' h+ K& R+ k3 B6 t. g[p=197, null, left][size=197px](5)

    [p=197, null, left][size=197px]若

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]<0

    [p=197, null, left][size=197px]则接受

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]作为新的当前解,否则以概率

    [p=210, null, left][size=197px]exp(-

    [p=210, null, left][size=197px]Δ

    [p=210, null, left][size=197px]t

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]/T)

    [p=210, null, left][size=197px]接受

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]作为新的当前解

    [p=210, null, left][size=197px].


    1 N0 L3 q6 q; ]8 Y6 Q$ s5 p. t& \" v+ `' E1 [5 p5 X7 a
    [p=197, null, left][size=197px](6)

    [p=197, null, left][size=197px]如果满足终止条件则输出当前解作为最优解,结

    [p=197, null, left][size=197px]束程序。

    : `4 W' p8 [# p, k; A+ z
    5 D9 g" z+ m" F, W" z* [' ^
    ) E: i/ D5 m& R" L( ^& m7 K0 O% {' k
    [p=197, null, left][size=197px]终止条件通常取为连续若干个新解都没有被接受时

    [p=197, null, left][size=197px]终止算法。

    % Z, Z: l, L) k

    ) {3 L4 q- w9 G% P& I3 m6 n  y
    [p=197, null, left][size=197px](7) T

    [p=197, null, left][size=197px]逐渐减少,且

    [p=197, null, left][size=197px]T->0

    [p=197, null, left][size=197px],然后转第

    [p=197, null, left][size=197px]2

    [p=197, null, left][size=197px]步。


    , _& J" p3 l( X" G* z& M3 F; \2 t& X+ t# ^4 V

    * l2 N! c+ @' K0 r[p=197, null, left][size=197px]模拟退火算法新解的产生和接受可分为如下四个步

    [p=197, null, left][size=197px]骤:


    4 p1 x' f6 R7 Z5 B4 U2 t' L0 G$ r
    / w# T. H* F4 B8 z/ d
    [p=197, null, left][size=197px]第一步是由一个产生函数从当前解产生一个位于解

    [p=197, null, left][size=197px]空间的新解;为便于后续的计算和接受,减少算法耗时,

    [p=197, null, left][size=197px]通常选择由当前新解经过简单地变换即可产生新解的方

    [p=197, null, left][size=197px]法,如对构成新解的全部或部分元素进行置换、互换等,

    [p=197, null, left][size=197px]注意到产生新解的变换方法决定了当前新解的邻域结构,

    [p=197, null, left][size=197px]因而对冷却进度表的选取有一定的影响。


    * g# l6 @8 V. M: @& i9 _+ T$ n: C' i, c) l8 j2 u4 ]/ O% L
    & _: a# w& V& c* A5 ]
    [p=197, null, left][size=197px]第二步是计算与新解所对应的目标函数差。

    [p=197, null, left][size=197px]因为目标

    [p=197, null, left][size=197px]函数差仅由变换部分产生,

    [p=197, null, left][size=197px]所以目标函数差的计算最好按

    [p=197, null, left][size=197px]增量计算。事实表明,对大多数应用而言,这是计算目标

    [p=197, null, left][size=197px]函数差的最快方法。

    # D  X8 ?% u4 c3 `

    6 ]/ ^$ v+ u4 J9 [) B
      p( G9 y3 K5 \- ~/ Z) o. n0 ^2 ?7 E; w% E2 F$ ~4 e6 f! m
    % T5 v9 h5 s' G  c- t$ ^8 t, c

      j6 n; y- X7 r5 B
    5 q2 \0 ]5 E% q8 F% A: u4 G# U3 F; c' l" |* w# g" n
    ' I: N1 k; C3 p/ L2 Y2 S" w

    ( D  B% j! ]/ Z* t
    # |; y3 J$ m, Q& G
    ' E" y; q8 l; v5 o* ]/ ?
    1 {2 @3 a! y- X# {
    ; ^. Z/ t. Q7 j: ^( Z5 f[p=197, null, left][size=197px]第三步是判断新解是否被接受

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]判断的依据是一个接

    [p=197, null, left][size=197px]受准则,最常用的接受准则是

    [p=197, null, left][size=197px]Metropo1is

    [p=197, null, left][size=197px]准则

    [p=197, null, left][size=197px]:

    [p=197, null, left][size=197px]若

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]<0

    [p=197, null, left][size=197px]则接受

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]作为新的当前解

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]否则以概率

    [p=197, null, left][size=197px]exp(-

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]/T)

    [p=197, null, left][size=197px]接受

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]作为新的当前解

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]。

    ! O  G) O! v4 L

    . Q9 P# z; {" {5 b+ v& K! y& F' B, |7 K# h
    [p=197, null, left][size=197px]第四步是当新解被确定接受时,用新解代替当前解,

    [p=197, null, left][size=197px]这只需将当前解中对应于产生新解时的变换部分予以实

    [p=197, null, left][size=197px]现,同时修正目标函数值即可。此时,当前解实现了一次

    [p=197, null, left][size=197px]迭代。可在此基础上开始下一轮试验。而当新解被判定为

    [p=197, null, left][size=197px]舍弃时,则在原当前解的基础上继续下一轮试验。

    2 |2 b: i. K0 L: P$ `' M
    5 w- q. O$ {+ l% G$ j2 ^
    . ^/ Q, h" L7 ~' x5 \6 E
    [p=197, null, left][size=197px]模拟退火算法与初始值无关,

    [p=197, null, left][size=197px]算法求得的解与初始解

    [p=197, null, left][size=197px]状态

    [p=197, null, left][size=197px]S(

    [p=197, null, left][size=197px]是算法迭代的起点

    [p=197, null, left][size=197px])

    [p=197, null, left][size=197px]无关;模拟退火算法具有渐近

    [p=197, null, left][size=197px]收敛性,

    [p=197, null, left][size=197px]已在理论上被证明是一种以概率

    [p=197, null, left][size=197px]l

    [p=197, null, left][size=197px]收敛于全局最

    [p=197, null, left][size=197px]优解的全局优化算法;模拟退火算法具有并行性

    + T  c' C" t" H7 m4 T

    3 t% A6 W1 M+ v5 J: ~' r& O0 t' A7 c( v
    ( ~# a: Y  U3 `/ U' o7 o5 g
    * F! C  [' l0 a. o3 S1 x
    # o, g0 [& O+ E- H: Z* \) x! U
    . ?" ]9 u0 ~3 j" J
    - c( G! [7 C6 r6 b
    3 c" U$ [* {: a, O# V
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-30 09:01 , Processed in 0.527453 second(s), 49 queries .

    回顶部