- 在线时间
- 21 小时
- 最后登录
- 2015-9-11
- 注册时间
- 2014-6-28
- 听众数
- 13
- 收听数
- 0
- 能力
- 0 分
- 体力
- 611 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 224
- 相册
- 0
- 日志
- 1
- 记录
- 0
- 帖子
- 85
- 主题
- 16
- 精华
- 0
- 分享
- 0
- 好友
- 10
升级   62% TA的每日心情 | 开心 2015-1-3 20:49 |
---|
签到天数: 54 天 [LV.5]常住居民I
 群组: 国赛讨论 |
[p=272, null, left]模拟退火算法
$ \: _& L* w2 r; O
% h: Q9 O8 g$ y5 k1 W7 h+ w* _3 T- i# X; ]1 Y6 |8 Y
[p=197, null, left]模拟退火算法来源于固体退火原理,[p=197, null, left]将固体加温至充[p=197, null, left]分高,再让其徐徐冷却,加温时,固体内部粒子随温升变[p=197, null, left]为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每[p=197, null, left]个温度都达到平衡态,最后在常温时达到基态,内能减为[p=197, null, left]最小。根据[p=197, null, left][size=197px]Metropolis[p=197, null, left]准则,粒子在温度[p=197, null, left][size=197px]T[p=197, null, left]时趋于平衡[p=197, null, left]的概率为[p=197, null, left][size=197px]e-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E/(kT)[p=197, null, left],其中[p=197, null, left][size=197px]E[p=197, null, left]为温度[p=197, null, left][size=197px]T[p=197, null, left]时的内能,[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E[p=197, null, left]为[p=197, null, left]其改变量,[p=197, null, left][size=197px]k[p=197, null, left]为[p=197, null, left][size=197px]Boltzmann[p=197, null, left]常数。用固体退火模拟组合优[p=197, null, left]化问题,将内能[p=197, null, left][size=197px]E[p=197, null, left]模拟为目标函数值[p=197, null, left][size=197px]f[p=197, null, left],温度[p=197, null, left][size=197px]T[p=197, null, left]演化成控[p=197, null, left]制参数[p=197, null, left][size=197px]t[p=197, null, left],即得到解组合优化问题的模拟退火算法:由初[p=197, null, left]始解[p=197, null, left][size=197px]i[p=197, null, left]和控制参数初值[p=197, null, left][size=197px]t[p=197, null, left]开始,[p=197, null, left]对当前解重复[p=197, null, left][size=197px]“[p=197, null, left]产生新解[p=197, null, left][size=197px]→[p=197, null, left]计算目标函数差[p=197, null, left][size=197px]→[p=197, null, left]接受或舍弃[p=197, null, left][size=197px]”[p=197, null, left]的迭代,并逐步衰减[p=197, null, left][size=197px]t[p=197, null, left]值,[p=197, null, left]算法终止时的当前解即为所得近似最优解,[p=197, null, left]这是基于蒙特[p=197, null, left]卡罗迭代求解法的一种启发式随机搜索过程。[p=197, null, left]退火过程由[p=197, null, left]冷却进度表[p=197, null, left][size=197px](Cooling Schedule)[p=197, null, left]控制,包括控制参数的初[p=197, null, left]值[p=197, null, left][size=197px]t[p=197, null, left]及其衰减因子[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left]、每个[p=197, null, left][size=197px]t[p=197, null, left]值时的迭代次数[p=197, null, left][size=197px]L[p=197, null, left]和停止条[p=197, null, left]件[p=197, null, left][size=197px]S[p=197, null, left]。( V1 l' L; w9 U; V
- n+ i* `4 ]. b# F# B! v: ~3 O5 |) p5 ^) x% t, \: t8 f% |
[p=197, null, left]模拟退火算法可以分解为解空间、[p=197, null, left]目标函数和初始解[p=197, null, left]三部分。
" L0 ?3 t/ K1 u4 P& I
8 t& Q% o: ~7 f7 O4 S0 M3 l) p: r/ k5 X. ?% _
[p=197, null, left]模拟退火的基本思想[p=197, null, left][size=197px]: ! o# [6 x" J8 |$ X
& A2 l, O2 L9 F) i! T[p=197, null, left][size=197px](1) [p=197, null, left]初始化:初始温度[p=197, null, left][size=197px]T([p=197, null, left]充分大[p=197, null, left][size=197px])[p=197, null, left],初始解状态[p=197, null, left][size=197px]S([p=197, null, left]是[p=197, null, left]算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left],' [; V! @! ]* L" d% ?) c
[p=197, null, left]每个[p=197, null, left][size=197px]T[p=197, null, left]值的迭代次数[p=197, null, left][size=197px]L - E3 H9 R9 S9 I Q+ K& R
2 ?" @) F$ y0 h! G; Q( i
% O; D/ d2 z, o: V5 N& @6 K4 ]$ a0 F& e/ R3 {) S2 m$ [
! ^8 h ]9 i9 B, D( \
7 m' }6 T( H: Q% O2 {9 }% e4 n9 f+ p% X1 v" v0 r% d
+ g# U9 C6 O- }1 J: W2 r# `
2014全国一级建造师资格考试备考资料真题集锦建筑工程经济 建筑工程项目管理 建筑工程法规 专业工程管理与实务' t# N+ \5 E0 ], l
& ~" P6 p& Z. t6 i* I& u+ q8 y
" a! E; E0 T* d1 R) V w% ]
. s6 g# J* c8 j" E1 w& X; {
4 K$ ?$ G: A' t( o$ R0 v
5 ?" \) `) \7 E+ K6 ]. f5 H( \5 F7 y8 f4 s
' ?6 G' m7 Q+ Z, b c[p=197, null, left][size=197px](2) [p=197, null, left][size=197px]对[p=197, null, left][size=197px]k=1[p=197, null, left][size=197px],[p=197, null, left][size=197px]……[p=197, null, left][size=197px],[p=197, null, left][size=197px]L[p=197, null, left][size=197px]做第[p=197, null, left][size=197px](3)[p=197, null, left][size=197px]至第[p=197, null, left][size=197px]6[p=197, null, left][size=197px]步:, v+ m1 E1 \# _1 [0 P* ?% T" R
2 T( w8 h; u; O5 m/ _& u) v8 v9 ?# r! m/ o) g5 y+ A$ ^$ ^: Y
[p=197, null, left][size=197px](3) [p=197, null, left][size=197px]产生新解[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′/ A% ~7 Q9 W4 v, w, o+ u& u( U
( `! U" X1 \2 o
1 @: i1 {9 F) y' f+ T
[p=197, null, left][size=197px](4) [p=197, null, left][size=197px]计算增量[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]=C(S[p=197, null, left][size=197px]′[p=197, null, left][size=197px])-C(S)[p=197, null, left][size=197px],其中[p=197, null, left][size=197px]C(S)[p=197, null, left][size=197px]为评价函数
0 J5 Z7 P) d* h' C; W/ z3 L M
4 p6 d# l3 w; H, |6 F6 q! T9 m) o* g* m
( k; I' h+ K& R+ k3 B6 t. g[p=197, null, left][size=197px](5) [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解,否则以概率[p=210, null, left][size=197px]exp(-[p=210, null, left][size=197px]Δ[p=210, null, left][size=197px]t[p=210, null, left][size=197px]′[p=210, null, left][size=197px]/T)[p=210, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px].
1 N0 L3 q6 q; ]8 Y6 Q$ s5 p. t& \" v+ `' E1 [5 p5 X7 a
[p=197, null, left][size=197px](6) [p=197, null, left][size=197px]如果满足终止条件则输出当前解作为最优解,结[p=197, null, left][size=197px]束程序。: `4 W' p8 [# p, k; A+ z
5 D9 g" z+ m" F, W" z* [' ^
) E: i/ D5 m& R" L( ^& m7 K0 O% {' k
[p=197, null, left][size=197px]终止条件通常取为连续若干个新解都没有被接受时[p=197, null, left][size=197px]终止算法。% Z, Z: l, L) k
) {3 L4 q- w9 G% P& I3 m6 n y
[p=197, null, left][size=197px](7) T[p=197, null, left][size=197px]逐渐减少,且[p=197, null, left][size=197px]T->0[p=197, null, left][size=197px],然后转第[p=197, null, left][size=197px]2[p=197, null, left][size=197px]步。
, _& J" p3 l( X" G* z& M3 F; \2 t& X+ t# ^4 V
* l2 N! c+ @' K0 r[p=197, null, left][size=197px]模拟退火算法新解的产生和接受可分为如下四个步[p=197, null, left][size=197px]骤:
4 p1 x' f6 R7 Z5 B4 U2 t' L0 G$ r
/ w# T. H* F4 B8 z/ d
[p=197, null, left][size=197px]第一步是由一个产生函数从当前解产生一个位于解[p=197, null, left][size=197px]空间的新解;为便于后续的计算和接受,减少算法耗时,[p=197, null, left][size=197px]通常选择由当前新解经过简单地变换即可产生新解的方[p=197, null, left][size=197px]法,如对构成新解的全部或部分元素进行置换、互换等,[p=197, null, left][size=197px]注意到产生新解的变换方法决定了当前新解的邻域结构,[p=197, null, left][size=197px]因而对冷却进度表的选取有一定的影响。
* g# l6 @8 V. M: @& i9 _+ T$ n: C' i, c) l8 j2 u4 ]/ O% L
& _: a# w& V& c* A5 ]
[p=197, null, left][size=197px]第二步是计算与新解所对应的目标函数差。[p=197, null, left][size=197px]因为目标[p=197, null, left][size=197px]函数差仅由变换部分产生,[p=197, null, left][size=197px]所以目标函数差的计算最好按[p=197, null, left][size=197px]增量计算。事实表明,对大多数应用而言,这是计算目标[p=197, null, left][size=197px]函数差的最快方法。# D X8 ?% u4 c3 `
6 ]/ ^$ v+ u4 J9 [) B
p( G9 y3 K5 \- ~/ Z) o. n0 ^2 ?7 E; w% E2 F$ ~4 e6 f! m
% T5 v9 h5 s' G c- t$ ^8 t, c
j6 n; y- X7 r5 B
5 q2 \0 ]5 E% q8 F% A: u4 G# U3 F; c' l" |* w# g" n
' I: N1 k; C3 p/ L2 Y2 S" w
( D B% j! ]/ Z* t
# |; y3 J$ m, Q& G
' E" y; q8 l; v5 o* ]/ ?
1 {2 @3 a! y- X# {
; ^. Z/ t. Q7 j: ^( Z5 f[p=197, null, left][size=197px]第三步是判断新解是否被接受[p=197, null, left][size=197px],[p=197, null, left][size=197px]判断的依据是一个接[p=197, null, left][size=197px]受准则,最常用的接受准则是[p=197, null, left][size=197px]Metropo1is[p=197, null, left][size=197px]准则[p=197, null, left][size=197px]: [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解[p=197, null, left][size=197px]S[p=197, null, left][size=197px],[p=197, null, left][size=197px]否则以概率[p=197, null, left][size=197px]exp(-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]/T)[p=197, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px]S[p=210, null, left][size=197px]。! O G) O! v4 L
. Q9 P# z; {" {5 b+ v& K! y& F' B, |7 K# h
[p=197, null, left][size=197px]第四步是当新解被确定接受时,用新解代替当前解,[p=197, null, left][size=197px]这只需将当前解中对应于产生新解时的变换部分予以实[p=197, null, left][size=197px]现,同时修正目标函数值即可。此时,当前解实现了一次[p=197, null, left][size=197px]迭代。可在此基础上开始下一轮试验。而当新解被判定为[p=197, null, left][size=197px]舍弃时,则在原当前解的基础上继续下一轮试验。2 |2 b: i. K0 L: P$ `' M
5 w- q. O$ {+ l% G$ j2 ^
. ^/ Q, h" L7 ~' x5 \6 E
[p=197, null, left][size=197px]模拟退火算法与初始值无关,[p=197, null, left][size=197px]算法求得的解与初始解[p=197, null, left][size=197px]状态[p=197, null, left][size=197px]S([p=197, null, left][size=197px]是算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left][size=197px]无关;模拟退火算法具有渐近[p=197, null, left][size=197px]收敛性,[p=197, null, left][size=197px]已在理论上被证明是一种以概率[p=197, null, left][size=197px]l [p=197, null, left][size=197px]收敛于全局最[p=197, null, left][size=197px]优解的全局优化算法;模拟退火算法具有并行性+ T c' C" t" H7 m4 T
3 t% A6 W1 M+ v5 J: ~' r& O0 t' A7 c( v
( ~# a: Y U3 `/ U' o7 o5 g
* F! C [' l0 a. o3 S1 x
# o, g0 [& O+ E- H: Z* \) x! U
. ?" ]9 u0 ~3 j" J
- c( G! [7 C6 r6 b
3 c" U$ [* {: a, O# V
|
zan
|