- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
|---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit- }! b9 T( N4 X. [. q
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4* B- H2 K6 B! f$ f0 [0 d
% k6->k6 k7->k7
" l1 J" R( R: s) V1 _% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);$ `5 a/ B( W" y# l5 ?
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);2 F# _# y. p3 [8 F3 C, b. L
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);: {- c: U9 F. g4 `) V2 H4 s6 h) ]# e
% dLadt = k(7)*C(Hmf);
, G, V! ]) m" I( S8 ?%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);3 C9 T; \8 T$ w, h1 _. g$ V* D
clear all) ?6 z" Y3 ]) c- P+ u
clc- X9 Q7 t# B5 O( N; T
format long
" i5 x7 S+ P/ v$ G% t/min Glc Fru Fa La HMF/ mol/L
" ]3 g, y4 D. Q. V" x5 ^- Z Kinetics=[0 0.25 0 0 0 0% G" d0 {! C1 W
15 0.2319 0.01257 0.0048 0 2.50E-04
: x6 O4 A* x+ e9 W- @ 30 0.19345 0.027 0.00868 0 7.00E-04( \' |: C& f; b6 g4 W
45 0.15105 0.06975 0.02473 0 0.0033
I& W: J4 Z# Q) c, Y+ L 60 0.13763 0.07397 0.02615 0 0.00428 r1 `( p4 B, g6 d
90 0.08115 0.07877 0.07485 0 0.01405
! e0 b% W7 x% X' l2 A Y. w ` 120 0.0656 0.07397 0.07885 0.00573 0.02143
% a$ O' P. j4 s& x1 C' ? 180 0.04488 0.0682 0.07135 0.0091 0.03623; K5 V# a$ ~- R9 b3 l: f5 X/ W- U
240 0.03653 0.06488 0.08945 0.01828 0.054529 e6 I e/ G1 D, D7 L D
300 0.02738 0.05448 0.09098 0.0227 0.0597
) ?& I( w. k9 w3 j 360 0.01855 0.04125 0.09363 0.0239 0.06495];
4 |3 Q; Y# _# m( \4 P: ek0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
! O+ F8 g0 f2 A6 P* ?4 Zlb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限/ ~1 Z M6 _. r; ^$ A: a! t
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限$ E: b; u! T9 j; \& h3 X. W1 U
x0 = [0.25 0 0 0 0];* y5 I1 m7 _! F
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]5 ?5 u2 l8 H7 w0 A0 B! f+ A; s" E
% warning off. J9 @/ a, P: v |7 p2 j
% 使用函数 ()进行参数估计! r X' ~" Z* \- M4 y% t' f
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);7 x5 k' h7 W @' F
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')5 Z6 ~% N. q9 q1 d7 ?, ^
fprintf('\tk1 = %.11f\n',k(1))! A" B, h" e( B: F. j% T1 `- m
fprintf('\tk2 = %.11f\n',k(2))
1 G. J9 p7 p" J0 Z% y, q' W& |fprintf('\tk3 = %.11f\n',k(3))$ L8 P+ Q$ j$ r% c, @6 F
fprintf('\tk4 = %.11f\n',k(4))' a' n5 t$ p. l0 p: T/ h
fprintf('\tk5 = %.11f\n',k(5))
* {) }/ h: [! u& }fprintf('\tk6 = %.11f\n',k(6))
4 x$ i1 e4 K$ x yfprintf('\tk7 = %.11f\n',k(7)); ?1 y4 e3 [6 O0 t) A
fprintf('\tk8 = %.11f\n',k(8))7 t8 p, {5 [2 |) o
fprintf('\tk9 = %.11f\n',k(9))" X$ g& {! c$ j: v* j
fprintf('\tk10 = %.11f\n',k(10))+ e( ]! K( ^7 e0 R& G
fprintf(' The sum of the squares is: %.1e\n\n',fval)" m t6 c, S3 h2 C
k_fm= k;
3 e/ N U" l' g& O! K8 S/ x9 D! O% warning off
, X1 a# d8 Q0 N" Y( Y; w* N) i% 使用函数lsqnonlin()进行参数估计
8 H5 U% C/ }6 S1 v- B[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
/ B, N2 X' @9 q9 f lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); + a# P v% s0 B
ci = nlparci(k,residual,jacobian);% t9 \" _% L3 [, `, M
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')8 M) G- S9 Q, W" k/ G
fprintf('\tk1 = %.11f\n',k(1))
r. [2 U. u4 a. C* C6 g# F7 ]fprintf('\tk2 = %.11f\n',k(2))
( h9 S5 x, x( R" F) Z( A! Qfprintf('\tk3 = %.11f\n',k(3))
4 P) d3 | M- @8 Afprintf('\tk4 = %.11f\n',k(4))
# t" w* o8 U e0 U7 Sfprintf('\tk5 = %.11f\n',k(5))
8 Z z+ { _) p& A7 qfprintf('\tk6 = %.11f\n',k(6))
. h$ d2 q, U4 ^( t- Ffprintf('\tk7 = %.11f\n',k(7))
" [, G. [) M& S5 Bfprintf('\tk8 = %.11f\n',k(8))! E9 _$ g1 b- g/ o' @. L4 k' L
fprintf('\tk9 = %.11f\n',k(9))
: i& p) t1 x1 o; Qfprintf('\tk10 = %.11f\n',k(10))
1 L* G8 h/ S+ e% I) Y# J9 Xfprintf(' The sum of the squares is: %.1e\n\n',resnorm)
5 I5 ]& t8 X0 l& `( j, `k_ls = k;
. ~- a, ^$ R& f3 @+ d* Loutput
9 F: M4 t9 L2 V8 \3 m5 H8 qwarning off/ t8 z8 V# X) [$ r/ d' v' c" o
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
- O! L+ V7 S9 {6 j. `0 g9 {k0 = k_fm;
# N( {; d7 m- H$ v[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
6 L- B' ] ~+ V* M: i4 c* A$ C( y lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
! [$ H3 T6 Q5 u1 l7 y1 lci = nlparci(k,residual,jacobian);
T6 H7 z+ ?# |7 k" q( Gfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')7 p& s( O0 L7 H
fprintf('\tk1 = %.11f\n',k(1))4 a+ z$ l9 v* [, ]( q+ }4 d
fprintf('\tk2 = %.11f\n',k(2))
4 c( j4 I2 c0 L6 w7 y% M! f* tfprintf('\tk3 = %.11f\n',k(3))
0 ]+ ^; v; w% S. p+ Dfprintf('\tk4 = %.11f\n',k(4))' v* w1 C/ g: n0 C- _ o2 K+ u
fprintf('\tk5 = %.11f\n',k(5))
4 [& {3 P& @+ S3 N8 A" t5 F1 X/ a3 xfprintf('\tk6 = %.11f\n',k(6))
/ S) E3 O" A9 X0 c+ L1 Wfprintf('\tk7 = %.11f\n',k(7))8 z1 J7 o; O- T2 C0 l
fprintf('\tk8 = %.11f\n',k(8))
E; T( a; V4 X& @! X4 m9 Q& _) cfprintf('\tk9 = %.11f\n',k(9))9 Y5 A2 ?; b6 P v" [ ~9 g$ a
fprintf('\tk10 = %.11f\n',k(10))
! D1 D% [; L0 g5 i' Xfprintf(' The sum of the squares is: %.1e\n\n',resnorm)
5 s t* t1 p. R P: k# I nk_fmls = k;2 G" J1 |* V; W. T" H! N! J
output3 y* u: _; P$ @7 W1 ]- ]
tspan = [0 15 30 45 60 90 120 180 240 300 360];
1 h& R. I* n9 w1 b2 b5 a8 ?+ e3 b- ?[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
; Y6 z- l* L+ D3 f: [' X" X' ~figure;
6 q, `) X' A n! yplot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
4 A5 C. c4 _9 f1 L* I# ~/ lfigure;plot(t,x(:,2:5));
* B x- ^" d- j" o+ ]' J" x4 |p=x(:,1:5)0 k% N/ l- J: h2 y. A5 T
hold on$ P3 J2 {$ Z' T+ ^
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real'): g% g0 _' _+ T, ]2 A* N
/ j9 f1 o: n9 p! [# N+ Q, T/ P0 ^9 N+ X
) w" y/ a+ O, g9 X3 m
' y" O# K& f2 Cfunction f = ObjFunc7LNL(k,x0,yexp)
C1 B9 h5 N0 N: d( `tspan = [0 15 30 45 60 90 120 180 240 300 360];
$ |6 ~4 e$ a4 e6 N# k[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
: e/ Q# V; W- O. q; i- G, l1 Cy(:,2) = x(:,1);
* Q$ `& j% F1 C, u" b4 Gy(:,3:6) = x(:,2:5);
; i, R6 C! \8 bf1 = y(:,2) - yexp(:,2);
' a$ J$ @% [4 H1 m/ h5 l2 }6 xf2 = y(:,3) - yexp(:,3);5 a" `7 k7 v' z. }$ ]5 I, z( Z+ g
f3 = y(:,4) - yexp(:,4);
/ T5 U8 a3 u" ?. d. i7 m# Uf4 = y(:,5) - yexp(:,5);
! B/ q4 L3 N9 u! Ff5 = y(:,6) - yexp(:,6);
. S$ a; b* U& bf = [f1; f2; f3; f4; f5];+ f- f& x: e3 M* E" |; K# q0 |
1 W/ M, H$ ~2 }* x# I X* d" E# u$ Q4 g
( a/ K' b4 y ofunction f = ObjFunc7Fmincon(k,x0,yexp)1 F+ K& ~ ?( e% d( i% y
tspan = [0 15 30 45 60 90 120 180 240 300 360];
: ]) P9 n m; E) d[t x] = ode45(@KineticEqs,tspan,x0,[],k);
& U0 }# V9 b7 P& e9 ` f: v4 I5 xy(:,2) = x(:,1);6 B/ i' u! Y8 ?4 l. s1 Z8 T
y(:,3:6) = x(:,2:5);5 n( G, [% I" n& k4 y" Y
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...8 R2 K) S; w+ n. U
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...& ?% o3 f. i# x( s. o& n1 F
+ sum((y(:,6)-yexp(:,6)).^2) ;
+ s+ r% E* V; t) \4 W7 d0 M. y9 |
/ w6 ?# n; l. G6 g* c' t6 N: B4 f8 d7 V1 K# d B! j
* b8 @6 ^' R& @+ e; V. Q' j! [$ l. m
function dxdt = KineticEqs(t,x,k)% m+ _* Y- |! w, ^4 T
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
3 t& x! O( f Y. c" v4 S; C: [dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
8 w9 u" E2 r1 ?6 i$ p- qdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);( l( s* W; g% t& {
dLadt = k(7)*x(5);
- T7 c/ G/ a) `- odHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
$ k$ p7 ]0 \) t4 Z: Udxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
) }1 a$ i# E4 z4 d* R
5 ]; ^8 D$ f- L9 e
6 o, }5 I; W0 ?' N5 ? |
zan
|