- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit
$ O7 o( L7 f$ I, @& {% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4) V7 w, W6 G8 j/ {
% k6->k6 k7->k7
- g. w. C- A0 \; S% j) v% Z, C% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);5 b% N- j( N$ S B$ K9 U. ~4 W) Q
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);# N3 |5 s* }% Q* P$ N" G
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);6 Z1 P2 P: d2 ]$ Y: ` C
% dLadt = k(7)*C(Hmf);8 F- {; s* V2 H$ q
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);& W+ v% ^ s: R
clear all
/ T% f- ?9 Q- c- B Xclc% ?$ o) I, c8 v1 B1 ]; Q0 b3 F
format long
5 {1 b S; c2 B' M* d" M# N% t/min Glc Fru Fa La HMF/ mol/L
$ M9 N5 I0 f$ ~! ~' T Kinetics=[0 0.25 0 0 0 0
; P7 H! z7 m' B: L, ?/ |" o. x 15 0.2319 0.01257 0.0048 0 2.50E-04
4 Q/ D0 g" w- O5 w) g- y3 B 30 0.19345 0.027 0.00868 0 7.00E-04
! D* L& Z E* z9 c% i 45 0.15105 0.06975 0.02473 0 0.0033
( p2 |3 [! i. j 60 0.13763 0.07397 0.02615 0 0.00428- l( A' i2 v% n8 U8 j: \: x
90 0.08115 0.07877 0.07485 0 0.01405
2 n4 [7 E8 A0 e* u6 P7 {" V' ^7 E9 Q 120 0.0656 0.07397 0.07885 0.00573 0.02143! e! R. z }0 ?' J3 Y: W( L( i) z" a
180 0.04488 0.0682 0.07135 0.0091 0.03623# Q0 h4 g; U- p& _6 D
240 0.03653 0.06488 0.08945 0.01828 0.05452* O* ?8 L- K9 \& ]* l
300 0.02738 0.05448 0.09098 0.0227 0.0597
$ x; f w9 J6 [% ]9 q& f& a8 U 360 0.01855 0.04125 0.09363 0.0239 0.06495];
" d# H" [# L5 R- e) P( I& kk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值, R. h' N# _, \4 `( R
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
" y2 y& g4 W- k. f( w; V# u5 `ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
+ i- E% o$ f l' _: Q j% {! z- ~x0 = [0.25 0 0 0 0];; l- C; I z! ?, P, Z3 w
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
, _, i9 {" n* v/ a. ^% warning off
! ~! ^' U8 I$ E/ p, q8 k% 使用函数 ()进行参数估计
# S1 V& i7 ]( W! S0 R[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
# @9 Y! A! G8 z# N+ z1 |2 xfprintf('\n使用函数fmincon()估计得到的参数值为:\n')
' P- o! f8 w C+ v' `, sfprintf('\tk1 = %.11f\n',k(1))
( U8 E) \7 Z( `: s0 tfprintf('\tk2 = %.11f\n',k(2))3 n5 T9 _6 R$ c; b0 \: k
fprintf('\tk3 = %.11f\n',k(3))' {$ J; g5 o0 Z) e
fprintf('\tk4 = %.11f\n',k(4))6 h1 ^( `3 w, N" \
fprintf('\tk5 = %.11f\n',k(5))9 B$ i5 e* S' F4 l5 d0 K
fprintf('\tk6 = %.11f\n',k(6))( w- d: K( O. a+ V! j
fprintf('\tk7 = %.11f\n',k(7))
# L R2 x4 H0 efprintf('\tk8 = %.11f\n',k(8))
* d. z8 v2 d. s2 |fprintf('\tk9 = %.11f\n',k(9))/ x4 r/ R6 P( \& ~+ x5 L$ q9 O
fprintf('\tk10 = %.11f\n',k(10))
# n6 @" ^: V4 h1 R& F1 `fprintf(' The sum of the squares is: %.1e\n\n',fval)( ]* B- J, t v. p+ l" n0 z
k_fm= k; H# m/ n, O( q2 l n, d8 _
% warning off
8 p/ O& N, N$ {' s S; P" G8 |% 使用函数lsqnonlin()进行参数估计
6 }6 B* M4 r4 S6 k[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...' o* E2 ^9 C& k. u7 X3 l
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); 9 v! l% p) {, Z J5 x9 b
ci = nlparci(k,residual,jacobian);
( N6 G1 W1 \5 D7 g5 Afprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')0 i$ ?4 [% F; ]* \' _' _
fprintf('\tk1 = %.11f\n',k(1))
3 r, o ~* u" Z x7 Y( Lfprintf('\tk2 = %.11f\n',k(2)), T+ H: \) H' f& |; ~" A/ B
fprintf('\tk3 = %.11f\n',k(3))
* x0 x3 g2 k5 gfprintf('\tk4 = %.11f\n',k(4))' R/ `: W; U: s/ s
fprintf('\tk5 = %.11f\n',k(5))
$ j# W2 A5 N# [fprintf('\tk6 = %.11f\n',k(6)), R. _& g V" Y8 {: V! l; ^3 g x
fprintf('\tk7 = %.11f\n',k(7))- i( g9 e5 J0 j$ a7 u
fprintf('\tk8 = %.11f\n',k(8))
# x( d$ Z$ Z4 q: E/ k( z. Bfprintf('\tk9 = %.11f\n',k(9))
# W# [1 a+ d5 }' Hfprintf('\tk10 = %.11f\n',k(10))
: V b- w7 V, F& @" ufprintf(' The sum of the squares is: %.1e\n\n',resnorm)
9 ?2 k: x# O4 S; t& P* lk_ls = k;
: F% [1 [' W/ Y- q) Z8 goutput+ o9 e5 L, I4 K* C/ I% ^/ a( `; g0 B
warning off
3 H& d: Y2 y* `6 i% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计, _) ?$ U$ O7 T. l4 n* ?
k0 = k_fm;6 N, U& U9 n- N! Q
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
) O6 q' H9 F: n5 L lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); 3 \4 J% Q# \: Q
ci = nlparci(k,residual,jacobian);
& u# K" P \& v7 Jfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n') @. [5 R& j& h1 {7 \+ x* a9 M
fprintf('\tk1 = %.11f\n',k(1))
; W# X% r) c( l- o1 P# ufprintf('\tk2 = %.11f\n',k(2))
2 H2 e( x3 }4 W8 y) ufprintf('\tk3 = %.11f\n',k(3))$ p! ` ^+ y9 u
fprintf('\tk4 = %.11f\n',k(4))4 h& Q( ~, R8 j( ]
fprintf('\tk5 = %.11f\n',k(5))+ b5 A& s: t3 S, H0 Y5 V
fprintf('\tk6 = %.11f\n',k(6))
( | Q1 y# H* H& `! A& @fprintf('\tk7 = %.11f\n',k(7))8 C0 U1 x( ?* T; X- Y
fprintf('\tk8 = %.11f\n',k(8))5 P1 B G" Y8 d3 j: n. m( y8 i }1 {
fprintf('\tk9 = %.11f\n',k(9))
+ [$ \1 ^9 Y$ k0 Q0 Y6 o: yfprintf('\tk10 = %.11f\n',k(10))
) x+ Q6 |6 e) R- S8 Vfprintf(' The sum of the squares is: %.1e\n\n',resnorm)5 w6 a: |4 _ L) Y# ]+ C2 s: y
k_fmls = k;
# e6 [3 x* Q0 l6 e8 Zoutput
1 G. W2 J# Z0 g& ?tspan = [0 15 30 45 60 90 120 180 240 300 360];# [. [! {5 }4 [, d5 |' e& [
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); . b6 H5 ~ {% d2 b, N1 t7 r
figure;7 ?- Q/ K& ~5 D: p
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')4 q0 t1 t8 e5 f1 H4 F- W
figure;plot(t,x(:,2:5));
. }& ^, J/ y2 I5 C% k# dp=x(:,1:5)& \8 J* w9 @/ X1 X
hold on, { H4 Z; Q( M7 ^" h& F- u% y6 }# I
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')" U* g6 X3 b/ b/ A+ s. l0 m
{: K& i: q% @7 F( Q" b' Y1 E0 k0 S
# T1 q' ?2 A% t7 |" ?2 e$ x' m
1 F' v2 {$ A; O4 O' B7 b z# yfunction f = ObjFunc7LNL(k,x0,yexp)
" v/ z5 E* x( E" P7 ?0 Rtspan = [0 15 30 45 60 90 120 180 240 300 360];; Y3 O9 V, F; ?7 G
[t, x] = ode45(@KineticEqs,tspan,x0,[],k); 3 O4 Y( t, V+ U9 `+ L
y(:,2) = x(:,1);
# ]3 C% |$ K6 D+ _/ Uy(:,3:6) = x(:,2:5);
/ t2 b2 r8 h2 T) i2 Kf1 = y(:,2) - yexp(:,2);& F. _4 }* L- W4 U
f2 = y(:,3) - yexp(:,3);
: K7 p3 N) z6 {8 y& P \( bf3 = y(:,4) - yexp(:,4);
8 F% H! v$ {! S( r! v6 W& c0 b; mf4 = y(:,5) - yexp(:,5);' i I4 \, m5 `% [0 m9 V
f5 = y(:,6) - yexp(:,6);
: @) a1 ~7 g' L- {f = [f1; f2; f3; f4; f5];% |" ?, Y S X+ i( V
o6 N7 S$ E d. D! ?$ @$ d
+ M+ e) S$ b$ O! W3 x3 b( t
. ^! k$ ^' b7 _, z
function f = ObjFunc7Fmincon(k,x0,yexp); u/ U: g% k. T \* g2 x
tspan = [0 15 30 45 60 90 120 180 240 300 360];( F5 N }, O8 K0 |% F. y/ D7 U
[t x] = ode45(@KineticEqs,tspan,x0,[],k); ) G8 B6 Y! X: }' q2 g& r/ x9 e) @3 Z) v* d
y(:,2) = x(:,1);- V0 R5 b6 m, e* d6 }8 Z, A
y(:,3:6) = x(:,2:5);
7 k5 b9 Z2 E0 F9 O" Cf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ... X; q0 \( h' r" h* o9 v! [
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
* T& W0 H: j m1 h5 C* ` + sum((y(:,6)-yexp(:,6)).^2) ;; h) E: q" m& z. x: L
& U7 l. s7 `6 F) ]# F6 T) k
- S; V1 o% b) v! v/ q8 W U- g2 c0 m' d7 {& c+ i
W( F4 y9 ^4 ufunction dxdt = KineticEqs(t,x,k)+ C. q- j" I1 k) X+ q$ f3 h
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
- M9 `: @$ [# B- o1 k2 ?9 P! B3 F! TdFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);" T0 C7 n. |5 u, j+ X' {5 m5 |
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
" q# f+ {7 Z. C2 P% ?dLadt = k(7)*x(5);
: r8 I% O6 B/ _) j9 }& Y4 F+ UdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);( I3 b$ s: k# I6 `
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
7 p, b" w9 u5 ^% u
+ c" g+ L: H# J$ {1 T! Z9 _8 }, m5 m% X/ |
|
zan
|