- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
|---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit
- L/ ~% E$ W8 t; H- t% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
9 U+ A# A) R0 N! g7 W% k6->k6 k7->k7 Y7 I$ F9 o1 _
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);9 H6 _* a9 u. ]8 J0 C- p
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);1 `, Y1 m8 N3 ?
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
) G; A% V% b3 I% dLadt = k(7)*C(Hmf);* l1 n9 Q. T' O" A9 K5 I
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
8 D8 p4 o5 z" _+ U2 z7 sclear all* L: j: `0 R, ]
clc: F6 C) w) j' m# V7 I" W' y; I
format long
# s: T, w: E, ]% t/min Glc Fru Fa La HMF/ mol/L 3 `3 g% [' v+ k$ q+ _
Kinetics=[0 0.25 0 0 0 0% J6 p. I- h* h0 ]% r- G: P
15 0.2319 0.01257 0.0048 0 2.50E-04
5 M) J$ H3 ?% u# ]- k6 }& N 30 0.19345 0.027 0.00868 0 7.00E-043 t3 `2 A y0 {/ Y, [9 g7 |
45 0.15105 0.06975 0.02473 0 0.0033. M# ^% [. b2 }7 E
60 0.13763 0.07397 0.02615 0 0.00428
- t4 R7 D& Q$ {8 y4 O7 C4 y& n" _ 90 0.08115 0.07877 0.07485 0 0.01405
$ }1 t8 \. A. J9 K3 Y) D! n' M 120 0.0656 0.07397 0.07885 0.00573 0.02143/ B% ~: E( N6 [+ }4 s
180 0.04488 0.0682 0.07135 0.0091 0.03623, |2 \ D* m' P5 H0 A3 k
240 0.03653 0.06488 0.08945 0.01828 0.05452
|! \# a& G+ Q. U5 e$ v+ h0 q% q 300 0.02738 0.05448 0.09098 0.0227 0.0597
" Z- t1 s, u3 r7 s2 U% K2 d 360 0.01855 0.04125 0.09363 0.0239 0.06495];- a8 G" N! d1 \6 D
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值) J6 E: I3 q+ L% N7 I
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限9 L" }! @- R5 `3 W8 N
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
0 x, k: {2 F' {- n+ u% G4 }- px0 = [0.25 0 0 0 0];; N, z5 R0 I! @3 _% E8 A# s1 T
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
- V& K; Z' u8 C) i% warning off
: z2 b# n5 [6 t! W% @" }5 c8 q% k% 使用函数 ()进行参数估计$ }- v! b8 j/ |5 g# {& s
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);( O( ^# Z [/ ? d
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')- c7 C) G" O. t4 j+ H
fprintf('\tk1 = %.11f\n',k(1))
, I3 n" I5 e8 t8 b( ?. \7 W/ bfprintf('\tk2 = %.11f\n',k(2))3 z; F" a. F0 ?
fprintf('\tk3 = %.11f\n',k(3)); O% ?7 Z$ i0 Y, x8 N
fprintf('\tk4 = %.11f\n',k(4))
; i6 C5 H7 f- F8 Sfprintf('\tk5 = %.11f\n',k(5))9 k% R& i [! z; ~) O
fprintf('\tk6 = %.11f\n',k(6))5 s! C' ^: a! |$ V7 B, m
fprintf('\tk7 = %.11f\n',k(7))
5 x5 A5 O) n) q4 }fprintf('\tk8 = %.11f\n',k(8))
( J& ?# ~( N* z- N: Q0 jfprintf('\tk9 = %.11f\n',k(9))- d; z& {$ c0 \4 R+ I) ^ Q- E
fprintf('\tk10 = %.11f\n',k(10))+ D3 u, ? v9 G
fprintf(' The sum of the squares is: %.1e\n\n',fval)
6 ]2 |$ L6 F$ ^6 k. G1 Uk_fm= k;
$ e/ M1 ]0 c0 p0 E; q% warning off
" P, y$ @5 X5 |) C% j% 使用函数lsqnonlin()进行参数估计
- w0 m% {- m" \1 G. i9 V5 l. p[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
7 {6 O, V1 a# d lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); 5 M. P- l8 T J; S! i( G; ?
ci = nlparci(k,residual,jacobian);! t) _+ L7 Y) }! g4 O) q
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
8 P! p# J& H0 x6 j# D7 ]) Rfprintf('\tk1 = %.11f\n',k(1)), {, M. Q" ~8 p! V! E L. P, m. G2 f
fprintf('\tk2 = %.11f\n',k(2)): S7 {4 x! r6 _' V* f( k
fprintf('\tk3 = %.11f\n',k(3))+ }4 U7 Y5 [- @* `$ ]5 L$ J* A5 e
fprintf('\tk4 = %.11f\n',k(4))
2 L' f0 L* w; T$ v q) X0 Dfprintf('\tk5 = %.11f\n',k(5))
4 E( U6 N, x% h* ?( jfprintf('\tk6 = %.11f\n',k(6))
2 a( @9 |) |5 U- Xfprintf('\tk7 = %.11f\n',k(7))3 T! g5 D& s- ~/ _2 g' ~3 N
fprintf('\tk8 = %.11f\n',k(8))+ x/ M$ w& ~% r) w
fprintf('\tk9 = %.11f\n',k(9))
! j4 j. z& u0 x7 `! z) rfprintf('\tk10 = %.11f\n',k(10))
4 M& @6 s( C( s; c5 rfprintf(' The sum of the squares is: %.1e\n\n',resnorm), N; P7 Y- z* @8 U5 \$ D T
k_ls = k;' q7 A" ]. N' s, c4 k
output& r8 ~ H' m6 p! X5 b0 v" @; `- z
warning off
1 o$ p" b" D' X3 E9 m% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
9 t; Y4 o" m+ d' R3 ?9 J6 _k0 = k_fm;
) X3 r. T* }5 W* A" Z8 |[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...5 l4 T8 {9 ]0 T
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); , H5 w8 D" t9 B, A# m! K) O
ci = nlparci(k,residual,jacobian);
$ ?/ W% N5 ^; T! M! p: D. yfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
3 w& z2 {8 d, B P; Ifprintf('\tk1 = %.11f\n',k(1))
* ^# ~) K; r+ bfprintf('\tk2 = %.11f\n',k(2))
- G, o0 n% H, Q: P: P; y" o7 Tfprintf('\tk3 = %.11f\n',k(3))
3 K& Z& W* b" ~$ p5 j5 Gfprintf('\tk4 = %.11f\n',k(4))/ [) Q; M4 b! N- Y: X3 ]
fprintf('\tk5 = %.11f\n',k(5))
+ i* l, x( Q6 X' pfprintf('\tk6 = %.11f\n',k(6))- H5 t/ x+ r! t* C; t
fprintf('\tk7 = %.11f\n',k(7))
# T+ b* `- g$ t. J4 kfprintf('\tk8 = %.11f\n',k(8))
7 a4 }) o6 E x q! Ufprintf('\tk9 = %.11f\n',k(9))
& B0 r& b0 |) y! u3 M$ U$ jfprintf('\tk10 = %.11f\n',k(10))
6 G ~ Y1 M3 E) q% k Efprintf(' The sum of the squares is: %.1e\n\n',resnorm)# `2 b% G2 L" D+ D2 [2 ^) m) t
k_fmls = k;
) p) S1 m, m K& H& v$ q8 Toutput
/ g. y1 P5 t# h5 i% F: |tspan = [0 15 30 45 60 90 120 180 240 300 360];$ U g! ]8 I4 n$ ^) B
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
9 Z8 z* d' [8 l6 \7 Dfigure;
J7 }% i4 H5 `9 Oplot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')8 l$ K$ X* s: N
figure;plot(t,x(:,2:5));
m3 Q4 ?; c( _; O d: m5 s8 B/ y4 z: @p=x(:,1:5)
! K. d+ D3 X$ f4 L6 W) o) l! Qhold on% d* y. K9 ]) A0 l$ g w- r4 \# s( x
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')5 ^) u. l$ \$ p& a% t2 I2 I
4 |& W7 U% L% u( j- \, L* |! j- z4 e" @+ }
+ V+ a$ g! f& \& T" k4 N5 }
function f = ObjFunc7LNL(k,x0,yexp)
2 M H" M) {( _/ r1 L8 C$ Ztspan = [0 15 30 45 60 90 120 180 240 300 360];
3 M' X8 R( z7 X2 T# S, E[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
1 u$ |7 r8 M) y( S) [2 ~. E8 Ry(:,2) = x(:,1);
& t2 {5 t2 r" i% m6 T- Xy(:,3:6) = x(:,2:5);
, v* c2 O- ?) Kf1 = y(:,2) - yexp(:,2);2 K# N- `* H6 N8 z
f2 = y(:,3) - yexp(:,3);
2 q+ t7 G9 \ N6 `f3 = y(:,4) - yexp(:,4);1 j- O+ r) |- n8 a# {
f4 = y(:,5) - yexp(:,5);/ O+ K B# F$ z
f5 = y(:,6) - yexp(:,6);
_" b3 @/ W: hf = [f1; f2; f3; f4; f5];+ Q+ ] ^/ _2 }/ _5 H n7 q% K
8 O" |+ W8 C+ m/ b* P1 l4 P4 s& T) i& z" ?
; S, x" m" N: N- g
function f = ObjFunc7Fmincon(k,x0,yexp)
- g, `8 b( ~1 Utspan = [0 15 30 45 60 90 120 180 240 300 360];
5 k6 m% |* x7 @3 `& f! O- G; Q[t x] = ode45(@KineticEqs,tspan,x0,[],k);
: U. c2 f0 q5 qy(:,2) = x(:,1);/ d3 V: }& F1 X# }" {7 X) l
y(:,3:6) = x(:,2:5);
* c [2 ^4 ]0 c W6 P1 bf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
' r/ p! P! g8 Z( U; _/ u + sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...3 O) P8 W. \1 q+ @
+ sum((y(:,6)-yexp(:,6)).^2) ;" _. c4 l R0 a1 n P% E2 ?0 @. N
4 l( @& V, ]$ |
( G: Q8 v; k6 C0 q. ]
P. K0 a( f' c* U3 J
, {$ F* E% v' s$ ifunction dxdt = KineticEqs(t,x,k)5 m. ?- x0 \2 n/ C" g8 w
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
$ b) C- T" D9 ]7 s5 C' e1 \dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
* v& P) [/ u7 i. P* @7 I1 wdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);& P9 h; f) P" Z/ f" o. J6 P+ H
dLadt = k(7)*x(5);
3 N1 o6 Y2 c& P, S7 z/ N; VdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
9 j! ^1 z* V, v* I: tdxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];" Y" v( h/ H- |, i
: l. @6 K# w V$ ?/ z1 D2 j7 r1 o$ H- N' H2 K6 @7 V/ m# f3 s+ S% |
|
zan
|