- 在线时间
- 130 小时
- 最后登录
- 2025-7-19
- 注册时间
- 2020-11-26
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 16008 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 5012
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 419
- 主题
- 395
- 精华
- 0
- 分享
- 0
- 好友
- 0
TA的每日心情 | 衰 2021-3-28 15:16 |
|---|
签到天数: 25 天 [LV.4]偶尔看看III
 |
基于长短时记忆神经网络的锅炉多参数协同预测模型% s( Y- u% J T" o; j. g
( q" x& N9 i3 U9 P3 K 锅炉协同控制是提高其灵活运行下蒸汽温度平稳的有效手段。以某660 MW 燃煤锅炉为研究对象,利用其历史运行数据,建立基于长短时记忆(LSTM)神经网络的主蒸汽温度、再热蒸汽温度、炉膛出口NOx 质量浓度、炉膛出口CO 质量浓度协同预测模型。模型预测结果表明,该协同预测模型4 个输出的相关系数均大于0.94,模型综合预测效果良好,且有较好的泛化能力。为锅炉蒸汽温度、NOx、炉效协同优化控制提供了依据。( m* M/ J! z. \9 E) F* d
# Z1 a- D: s, Z" w6 M9 ?" m ?
[关键词]燃煤锅炉;LSTM 神经网络;蒸汽温度;NOx/CO 质量浓度;多参数协同;预测模型
/ c8 `4 e$ r5 d" ~0 J8 W |
zan
|