- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
本帖最后由 lilianjie 于 2012-1-3 12:07 编辑
/ h, a# v; T, A8 B$ P, i8 @- P) e( A& ?- G. }5 O% z1 i/ o: k
heyting algebra 海廷代数
* E: d6 ]8 F+ H: g' f: ^" R0 ?8 I8 U& _( o- e& K
Virasoro 代数! m# c, t6 u/ [$ B5 U1 ^
3 k! z3 G: f3 X+ P2 F
; X0 b& b+ y$ c. v& J1 k3 M% l/ V$ mcoalgebras or cogebras 余代数 * H( Z/ b0 a, J3 H& V
余代数是带单位元的结合代数的对偶结构,后者的公理由一系列交换图给出,将这些图中的箭头反转,便得到余代数的公理。
2 _( S# W. T* E) P, O, p3 G( a
1 m! O: R% g! v" i余代数的概念可用于李群及群概形等领域中。2 e) l; ]. B" O9 l. z& H
/ M4 X- e% P9 d( {% t; ^2 s8 I$ I/ L1 k3 s" L) n& p
李余代数. i& Q' M: u; F4 a [. E# y7 }1 N
1 \! `4 r: B; A0 `% }一张学格的表:: N1 Y: s j o5 @( L+ O
9 ~& v- Q( n' h( Q4 D& H, E; K1. A boolean algebra is a complemented distributive lattice. (def)布尔代数是完全分配格
1 X" I1 R0 W' q( W5 m/ S0 ?& y( T
2. A boolean algebra is a heyting algebra.[1]布尔代数是一个海廷代数
0 |$ j8 \; U' I! m% N! \ J8 g ?- Z- a9 [4 |$ S3 ~
, f6 `' y4 D F; N! e
3. A boolean algebra is orthocomplemented.[2]布尔代数是正交可补
' T* |) ?% @0 D% r# K( h3 N( _% Q. H- J* B0 `& g: u+ ^3 Z
4. A distributive orthocomplemented lattice is orthomodular.[3]分配正交可补格是正交模
8 v: x8 P# P! ?: k6 P
- ^1 Q5 O7 z5 ?1 Q7 ~; m5. A boolean algebra is orthomodular. (1,3,4)布尔代数是正交模4 T- `2 E. k- N U4 @
) d8 B0 h/ L( I. u, a5 l. ~$ p& @2 F
# j! }4 p& `' _7 r1 t# o9 \6. An orthomodular lattice is orthocomplemented. (def)正交模格正交可补6 h5 y0 c: `/ j! _7 I( P
3 N( p( p0 G4 k& Y' Q7. An orthocomplemented lattice is complemented. (def)正交可补格可补
, H( d: @$ g I2 j
- c8 I3 N7 _+ Y! X1 i( m7 n1 _8. A complemented lattice is bounded. (def)可补格有界& o" d9 O0 K3 t! o. N2 O7 P0 f" |
2 c h9 x2 N$ k* S: H# P# D# y9. An algebraic lattice is complete. (def)代数格是完全的, J' K# u. [& ?& C' P! l! o
! E9 s. T i5 i+ }$ ]0 U
10. A complete lattice is bounded.完全格有界
* j; s5 y4 z9 {0 u1 y" G2 P* E- u6 s" `3 j4 Z$ }
11. A heyting algebra is bounded. (def)海廷代数有界0 f _- Q3 q8 U3 t% V3 `5 t
0 B# A% b0 P- O# F6 {! i+ z6 ~
12. A bounded lattice is a lattice. (def)有界格是格: ^4 y- S; \( N! l9 C& O
' u1 t, a: O" P9 s& E- Y13. A heyting algebra is residuated.海廷代数是剩余的
* V" l- v( R- @" g. |
8 N; a( I$ I& X& n14. A residuated lattice is a lattice. (def)剩余格是格
' s, g2 x) ~! |9 j
! j6 N) _& ?/ W! P5 ^4 i6 {+ J15. A distributive lattice is modular.[4]分配格是模" n8 Q# Y9 Y f+ N! W& x: E# S9 M
* C' m" p% C7 F. o1 P16. A modular complemented lattice is relatively complemented.[5]模可补格相关可补
1 u, Z( H! |' \' _9 ]
0 t4 @& ]6 z: i17. A boolean algebra is relatively complemented. (1,15,16)布尔代数相关可补, [% p! Q" u5 [9 Y: V V
7 S8 M# x& Z" |18. A relatively complemented lattice is a lattice. (def)相关可补格是格
6 P# k* u2 h, ~, r( z' [* h1 e1 e! `! n' s0 H' N7 D$ O
19. A heyting algebra is distributive.[6]海廷代数可分配
& T% h' L! b9 k- v) |5 a
8 _' M+ ] [0 T* w5 w0 j, q# M; b0 [20. A totally ordered set is a distributive lattice.全序集是分配格
3 C! _+ I1 _; ]. D- |6 ~4 j. q* G; E8 q' |% I
21. A metric lattice is modular.[7]度量格是模
: n8 W$ ~# S6 U9 Q
4 o7 K9 a4 K5 G6 b& w( l! }1 F22. A modular lattice is semi-modular.[8]模格是半模6 T+ [- c, r& Q2 O
. o+ Z& T: q# K4 M# w23. A projective lattice is modular.[9]防射格是模2 A% w* r4 V' }! w3 O
6 I0 f/ X+ f p, E. w9 A7 Y24. A projective lattice is geometric. (def)防射格可几何度量
* e [7 q2 n3 k5 m! p- `# i; O( _4 U6 `
25. A geometric lattice is semi-modular.[10]几何度量格是半模6 U- r6 S/ W* Y
- K' C" a+ C3 Y' ?+ N! ^! `
26. A semi-modular lattice is atomic.[11]半模格是原子格8 Y3 A T' k8 q
/ M) k& [$ { \% I27. An atomic lattice is a lattice. (def)原子格是格
4 C4 x: w: x) N0 E7 G0 E
4 Y2 o$ K$ @+ ^7 c28. A lattice is a semi-lattice. (def)格是半格8 k! S, X; [; h9 T( d
2 e6 A* M7 w8 \5 |4 A29. A semi-lattice is a partially ordered set. (def)半格是偏序集' W# [- a, i( v
% a( | `: f3 a$ i. X- v$ P" j |
|