Pronunciation of mathematical expressions 2 q: ~0 ]9 s# a( `1 \5 Y1 L: }: OThe pronunciations of the most common mathematical expressions are given in the list* P/ Y T. B$ ~2 }, j
below. In general, the shortest versions are preferred (unless greater precision is necessary). 2 y A C3 N" Q2 z# X. e1. Logic / D2 r7 ?: R8 i: ^: f0 Y! k9 there exists P/ a; Z9 x4 Y) [; I9 t
8 for all$ Z L+ `/ m3 _, G( A% ]
p ) q p implies q / if p, then q" P4 c& i- _9 M5 d, R: e
p , q p if and only if q /p is equivalent to q / p and q are equivalent9 u1 I9 x+ V0 ~( m# d) R
2. Sets / F8 ^; `% H2 Zx 2 A x belongs to A / x is an element (or a member) of A 1 Y- u0 {7 [. `5 Z' D( Zx =2 A x does not belong to A / x is not an element (or a member) of A 9 B V- h3 b9 _. vA ½ B A is contained in B / A is a subset of B0 k! O$ Q2 A/ A* ]
A ¾ B A contains B / B is a subset of A8 i+ P1 P" D6 `5 k6 q
A \ B A cap B / A meet B / A intersection B3 u1 t0 k* m" R5 a g3 `
A [ B A cup B / A join B / A union B) r% [4 K H8 B7 r! L7 a1 R
A n B A minus B / the di®erence between A and B * u! ^3 \. V: u' xA £ B A cross B / the cartesian product of A and B j% [# z/ z' z% V' d2 Z& w3. Real numbers5 T2 ?1 Q8 ?3 R+ |
x + 1 x plus one 8 R* P. h! i8 n, j& nx ¡ 1 x minus one/ g O! ^$ w9 v; I+ f& ?
x § 1 x plus or minus one/ |; Q( _5 h0 ^' }. u
xy xy / x multiplied by y& l5 o6 p+ l% |
(x ¡ y)(x + y) x minus y, x plus y ~% l7 y! g9 ^# R# a) c
x , t! j; {6 T6 |; u" M9 my/ V n: h/ B7 F4 C& `" C6 ^
x over y `9 _1 p% R7 j3 n4 ?) `= the equals sign 0 D2 h1 T- C" Gx = 5 x equals 5 / x is equal to 5 4 X6 C$ z. ? J, C' X( }: ?' lx 6= 5 x (is) not equal to 5 ( f3 l9 Q+ b% l1% W" e' I, r; z
x ´ y x is equivalent to (or identical with) y - M$ J( k9 Q* m7 f( Ox 6´ y x is not equivalent to (or identical with) y( @8 K- E# n" {. J
x > y x is greater than y ) {) J9 X6 ?8 p# w gx ¸ y x is greater than or equal to y & g3 _0 d% w0 @2 F6 x) Vx < y x is less than y3 ~3 J5 a4 A3 L6 \6 j# g
x · y x is less than or equal to y* f" n/ n5 [4 v+ d) {6 x3 O
0 < x < 1 zero is less than x is less than 1$ u; v: M* {) T
0 · x · 1 zero is less than or equal to x is less than or equal to 1 9 P$ D3 _1 p2 u g4 N1 T7 Bjxj mod x / modulus x ) a' ^7 s ?. ~+ u" a* Wx2 x squared / x (raised) to the power 24 Q2 f9 H! M! t" L+ U8 r- q
x3 x cubed$ H6 W0 L0 _+ N& R7 y/ L0 y- m
x4 x to the fourth / x to the power four# H3 P0 S7 W% D" ^' k, p7 h
xn x to the nth / x to the power n X) X. m5 u# I: c0 ~/ T4 K4 {6 V! |x¡n x to the (power) minus n 8 s e/ v* V& P& Y/ G: t- l9 Z1 r" Ypx (square) root x / the square root of x9 t6 N& Z# w, l! Z8 W
p3 x cube root (of) x 2 B9 P v2 h$ A& P. `4 }, Np4 x fourth root (of) x* V7 x- a7 }$ v4 u. {+ [; E
npx nth root (of) x - l- U" W. N- L. ?3 A# v(x + y)2 x plus y all squared * b* c0 f( `7 ?6 }: v6 p! ^³x 4 s" E. N; h7 F( {y6 z9 i/ W1 k0 e; B
´21 A c$ {5 [: e i
x over y all squared6 |% v% D' g% t: C) V
n! n factorial$ ?6 E r8 S g" H; B/ \
^x x hat9 y( V6 O* d; D* ~
¹x x bar. m& y3 `: Q2 R6 L
~x x tilde - S+ D: s/ r$ W7 _. f6 L# Y3 a* lxi xi / x subscript i / x su±x i / x sub i , b6 O: z( \! {; B; |" GXn8 s/ b) b0 f* `" u" y
i=12 q" y' L# a8 D. q: f- W& z C$ ]
ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai ! C. d* O: w" }5 ~/ I8 S4. Linear algebra ; k" m* g E. Rkxk the norm (or modulus) of x $ D8 n7 q! O7 j8 x. q. v( y6 }O¡¡!A OA / vector OA( @4 R2 ^8 t7 I8 W3 @- L( |
OA OA / the length of the segment OA 6 j1 j. A/ y" i# O r- {4 LAT A transpose / the transpose of A ) C1 B' P4 ?- {A¡1 A inverse / the inverse of A 4 a5 ^7 k1 w2 T2 H$ @20 ?* q' Y, t Z, R
5. Functions / M, Y, a3 A& k$ \9 _f(x) fx / f of x / the function f of x ! K& B' D! A! Y4 r. Y i5 f- kf : S ! T a function f from S to T 7 G2 g- r1 g) g& _x 7! y x maps to y / x is sent (or mapped) to y7 G- p& `) P6 Z$ b: w8 x
f0(x) f prime x / f dash x / the (¯rst) derivative of f with respect to x2 L8 E$ E% l7 m2 ?
f00(x) f double{prime x / f double{dash x / the second derivative of f with 8 Y0 S- F4 I9 Y0 Xrespect to x + f, R& @; M+ A; S- M$ Lf000(x) f triple{prime x / f triple{dash x / the third derivative of f with respect 5 w/ A: a% D% ito x 4 w- f; F) h+ A7 A7 O3 P3 `5 Qf(4)(x) f four x / the fourth derivative of f with respect to x0 J% O, y% y, V) ~+ l" ]
@f 6 z+ E% z1 a' u! l. _# G: x@x17 @- o0 Q5 C {+ U2 D/ }) s4 Z. i
the partial (derivative) of f with respect to x1! x3 e6 w# r7 w4 w: X3 ?7 }
@2f( l8 h: i$ u9 n+ ^8 R. b* F
@x21 * _9 o' U3 O4 h Gthe second partial (derivative) of f with respect to x1 6 C/ {+ Y6 ]8 Y3 } UZ - L/ Y7 |: n6 I$ Y1 2 ?9 d6 t+ j5 n! I* D0 K0' @! r7 l' Y+ w4 ]; h$ S/ U( Q" b
the integral from zero to in¯nity: m+ \0 b2 ^3 |0 [) }2 H
lim 8 r `8 L. S- r5 H9 [% d, {8 U$ V" mx!0% S5 y3 {5 n/ p B+ x$ T8 {
the limit as x approaches zero / V5 C6 {+ R0 Y& g4 L# ~lim % {: d# k- h$ o7 C* kx!+0 + X. s! u& i$ S) u7 Nthe limit as x approaches zero from above6 x: L; Q s. _6 C2 c2 C0 Y
lim& Y) d; d% U H1 d% }) R% G
x!¡0 : j: A. r2 A& m8 ethe limit as x approaches zero from below& L) a( {$ {/ G- C
loge y log y to the base e / log to the base e of y / natural log (of) y $ ` F9 l2 n. H$ u9 e& g' ]ln y log y to the base e / log to the base e of y / natural log (of) y 3 n9 a' z- k: z8 i4 s7 |Individual mathematicians often have their own way of pronouncing mathematical expressions7 F# M9 w+ \& p9 L" m0 U
and in many cases there is no generally accepted \correct" pronunciation.5 T; _, T3 t/ c" o! `8 h3 E2 M2 u
Distinctions made in writing are often not made explicit in speech; thus the sounds fx may 6 B5 X* ~( ^, m# F: E9 \$ W6 Obe interpreted as any of: fx, f(x), fx, FX, FX, F¡¡X!. The di®erence is usually made clear j+ d- [$ k0 z4 e5 n
by the context; it is only when confusion may occur, or where he/she wishes to emphasise- M2 Z/ O% V }' x. a1 d
the point, that the mathematician will use the longer forms: f multiplied by x, the function* V' j4 v9 @! [$ g# B
f of x, f subscript x, line FX, the length of the segment FX, vector FX." z, t4 V" G& @. [& b: d0 Q
Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes % c" [5 ^$ b3 w1 n e6 ]a di®erence in intonation or length of pauses) between pairs such as the following:: o( I( o0 m' `2 H6 Y* l1 P' W/ h* [# U
x + (y + z) and (x + y) + z ! n; r( V0 m1 _& ?3 ppax + b and pax + b 9 f# h& {% g; L; g2 `2 p. o; qan ¡ 1 and an¡15 q3 O! N5 ?: K) Z1 n/ s
The primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science 4 \# M4 K5 f% _8 J! X/ Rand Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have% m: h8 P& J2 [3 _
given good comments and supplements.6 h p) C. s. t
3