- 在线时间
- 21 小时
- 最后登录
- 2015-9-11
- 注册时间
- 2014-6-28
- 听众数
- 13
- 收听数
- 0
- 能力
- 0 分
- 体力
- 611 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 224
- 相册
- 0
- 日志
- 1
- 记录
- 0
- 帖子
- 85
- 主题
- 16
- 精华
- 0
- 分享
- 0
- 好友
- 10
升级   62% TA的每日心情 | 开心 2015-1-3 20:49 |
---|
签到天数: 54 天 [LV.5]常住居民I
 群组: 国赛讨论 |
[p=272, null, left]模拟退火算法$ g9 z8 u6 I/ B8 R
4 i+ f1 @- }8 u i+ a5 ?
7 Z9 H6 L5 v$ s, d, n' I[p=197, null, left]模拟退火算法来源于固体退火原理,[p=197, null, left]将固体加温至充[p=197, null, left]分高,再让其徐徐冷却,加温时,固体内部粒子随温升变[p=197, null, left]为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每[p=197, null, left]个温度都达到平衡态,最后在常温时达到基态,内能减为[p=197, null, left]最小。根据[p=197, null, left][size=197px]Metropolis[p=197, null, left]准则,粒子在温度[p=197, null, left][size=197px]T[p=197, null, left]时趋于平衡[p=197, null, left]的概率为[p=197, null, left][size=197px]e-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E/(kT)[p=197, null, left],其中[p=197, null, left][size=197px]E[p=197, null, left]为温度[p=197, null, left][size=197px]T[p=197, null, left]时的内能,[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E[p=197, null, left]为[p=197, null, left]其改变量,[p=197, null, left][size=197px]k[p=197, null, left]为[p=197, null, left][size=197px]Boltzmann[p=197, null, left]常数。用固体退火模拟组合优[p=197, null, left]化问题,将内能[p=197, null, left][size=197px]E[p=197, null, left]模拟为目标函数值[p=197, null, left][size=197px]f[p=197, null, left],温度[p=197, null, left][size=197px]T[p=197, null, left]演化成控[p=197, null, left]制参数[p=197, null, left][size=197px]t[p=197, null, left],即得到解组合优化问题的模拟退火算法:由初[p=197, null, left]始解[p=197, null, left][size=197px]i[p=197, null, left]和控制参数初值[p=197, null, left][size=197px]t[p=197, null, left]开始,[p=197, null, left]对当前解重复[p=197, null, left][size=197px]“[p=197, null, left]产生新解[p=197, null, left][size=197px]→[p=197, null, left]计算目标函数差[p=197, null, left][size=197px]→[p=197, null, left]接受或舍弃[p=197, null, left][size=197px]”[p=197, null, left]的迭代,并逐步衰减[p=197, null, left][size=197px]t[p=197, null, left]值,[p=197, null, left]算法终止时的当前解即为所得近似最优解,[p=197, null, left]这是基于蒙特[p=197, null, left]卡罗迭代求解法的一种启发式随机搜索过程。[p=197, null, left]退火过程由[p=197, null, left]冷却进度表[p=197, null, left][size=197px](Cooling Schedule)[p=197, null, left]控制,包括控制参数的初[p=197, null, left]值[p=197, null, left][size=197px]t[p=197, null, left]及其衰减因子[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left]、每个[p=197, null, left][size=197px]t[p=197, null, left]值时的迭代次数[p=197, null, left][size=197px]L[p=197, null, left]和停止条[p=197, null, left]件[p=197, null, left][size=197px]S[p=197, null, left]。
8 l: a- e# g9 f7 ~' d0 s. ~- @/ L. g. z$ L( r" R
, u; u8 k2 i: I5 P
[p=197, null, left]模拟退火算法可以分解为解空间、[p=197, null, left]目标函数和初始解[p=197, null, left]三部分。
\: o1 `: Y3 K& c4 N: P: a
6 G5 ?( O/ w9 M- j% ?1 D. v1 l- |2 X/ c
5 e" M3 ~) H. m$ J( s* n[p=197, null, left]模拟退火的基本思想[p=197, null, left][size=197px]:
. x6 i/ T% b2 z+ y' ^ R; n- _. Q8 {4 b0 b
[p=197, null, left][size=197px](1) [p=197, null, left]初始化:初始温度[p=197, null, left][size=197px]T([p=197, null, left]充分大[p=197, null, left][size=197px])[p=197, null, left],初始解状态[p=197, null, left][size=197px]S([p=197, null, left]是[p=197, null, left]算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left],7 d2 d% w' M% p; d6 a. r, s" q/ s
[p=197, null, left]每个[p=197, null, left][size=197px]T[p=197, null, left]值的迭代次数[p=197, null, left][size=197px]L , v* b0 O4 V4 B% g3 P" q
( @. [2 G( k. F# t
0 L: u0 J( S2 B/ z3 S
3 i7 F5 |# X% p: X/ `9 J) U- {) S. Y5 W. Z" u
; |. v$ u- C9 E. J
4 C8 v- O: ]8 o5 d/ H
2 |& L. l" A5 I! \7 W2014全国一级建造师资格考试备考资料真题集锦建筑工程经济 建筑工程项目管理 建筑工程法规 专业工程管理与实务
3 z0 k1 Q) m# l+ c" `) u$ t' ^5 R8 K( C' \# {5 o
7 |, \6 s& G# }" r
& K: i3 K0 Q, g- d# V9 O* b5 U# L; g- U- g
# l" ~* Z) W% J: S
# ~7 U& f* M; x' _9 h3 K: i C( \/ |9 n* s5 \1 T
[p=197, null, left][size=197px](2) [p=197, null, left][size=197px]对[p=197, null, left][size=197px]k=1[p=197, null, left][size=197px],[p=197, null, left][size=197px]……[p=197, null, left][size=197px],[p=197, null, left][size=197px]L[p=197, null, left][size=197px]做第[p=197, null, left][size=197px](3)[p=197, null, left][size=197px]至第[p=197, null, left][size=197px]6[p=197, null, left][size=197px]步:
$ |: _7 ~: u0 n i3 u8 T5 G) ?, y! X7 K: A
8 f% N g) y A4 G6 u* i[p=197, null, left][size=197px](3) [p=197, null, left][size=197px]产生新解[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′+ ~0 Z: S3 }9 N+ M( h
1 ]7 v4 M5 n$ [$ g; y0 z% m" \
( q* ^" B6 l: t* k' t[p=197, null, left][size=197px](4) [p=197, null, left][size=197px]计算增量[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]=C(S[p=197, null, left][size=197px]′[p=197, null, left][size=197px])-C(S)[p=197, null, left][size=197px],其中[p=197, null, left][size=197px]C(S)[p=197, null, left][size=197px]为评价函数
P) L6 w+ U9 D. w: M" e" X3 w8 q# U
8 ~$ f; ]+ U8 T3 }' x; O0 d5 o* r[p=197, null, left][size=197px](5) [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解,否则以概率[p=210, null, left][size=197px]exp(-[p=210, null, left][size=197px]Δ[p=210, null, left][size=197px]t[p=210, null, left][size=197px]′[p=210, null, left][size=197px]/T)[p=210, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px]. " _" Z) [/ o4 P; T, Y$ a, @
+ ?( y8 \7 x3 c8 D9 I8 o" H1 S[p=197, null, left][size=197px](6) [p=197, null, left][size=197px]如果满足终止条件则输出当前解作为最优解,结[p=197, null, left][size=197px]束程序。
0 f) I2 Q7 h* R! l0 I) |' k' d
! W7 e$ j6 T% N! J" M, x4 p P# ~! A
[p=197, null, left][size=197px]终止条件通常取为连续若干个新解都没有被接受时[p=197, null, left][size=197px]终止算法。- R3 G; g+ k. U# a8 G, T, T
2 [0 E7 o! W, [
6 d& j2 N1 m" t4 }7 ~* A[p=197, null, left][size=197px](7) T[p=197, null, left][size=197px]逐渐减少,且[p=197, null, left][size=197px]T->0[p=197, null, left][size=197px],然后转第[p=197, null, left][size=197px]2[p=197, null, left][size=197px]步。: q7 B& H6 y* B, ?
. P+ ^5 M, y* B3 {# s- G
A1 Y- G0 q: s: T
[p=197, null, left][size=197px]模拟退火算法新解的产生和接受可分为如下四个步[p=197, null, left][size=197px]骤:1 j' e4 I& ?! T
- W! [8 d8 K e J$ M# T" Y& B
% d; t2 J9 g+ R7 g+ y4 w% F- k[p=197, null, left][size=197px]第一步是由一个产生函数从当前解产生一个位于解[p=197, null, left][size=197px]空间的新解;为便于后续的计算和接受,减少算法耗时,[p=197, null, left][size=197px]通常选择由当前新解经过简单地变换即可产生新解的方[p=197, null, left][size=197px]法,如对构成新解的全部或部分元素进行置换、互换等,[p=197, null, left][size=197px]注意到产生新解的变换方法决定了当前新解的邻域结构,[p=197, null, left][size=197px]因而对冷却进度表的选取有一定的影响。- h1 [" a" D2 V6 x
# |- t& l7 O8 l. i% P
9 _+ J! P/ H0 q6 f' m[p=197, null, left][size=197px]第二步是计算与新解所对应的目标函数差。[p=197, null, left][size=197px]因为目标[p=197, null, left][size=197px]函数差仅由变换部分产生,[p=197, null, left][size=197px]所以目标函数差的计算最好按[p=197, null, left][size=197px]增量计算。事实表明,对大多数应用而言,这是计算目标[p=197, null, left][size=197px]函数差的最快方法。$ n6 n& q0 Y" y
, L$ T% ?' ]* p- ~/ c) B# J- K% m
! e/ L- E/ D& B/ M, i7 G
, I$ g2 I7 I2 U( `$ ~; H4 d! U" ?' i- y, C: _9 ^$ n
9 u* q5 H f* p. s0 {' d0 w$ G* e# t9 Y$ C( M c( K. @
% z$ n/ b' S! W* N
0 V+ J% H8 y" u- M( @5 h) |
! m$ U6 m2 O9 |, r3 ]5 z3 S
2 q: V' v0 A+ r7 F
) a6 M+ N0 Y$ }1 ~. G2 H X; H$ u6 a$ s7 [8 [1 w# ~5 K4 X9 h" k% f
" X8 p1 {# a. t* z[p=197, null, left][size=197px]第三步是判断新解是否被接受[p=197, null, left][size=197px],[p=197, null, left][size=197px]判断的依据是一个接[p=197, null, left][size=197px]受准则,最常用的接受准则是[p=197, null, left][size=197px]Metropo1is[p=197, null, left][size=197px]准则[p=197, null, left][size=197px]: [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解[p=197, null, left][size=197px]S[p=197, null, left][size=197px],[p=197, null, left][size=197px]否则以概率[p=197, null, left][size=197px]exp(-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]/T)[p=197, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px]S[p=210, null, left][size=197px]。7 r, i7 q' u! ?/ }. S M) n
2 l3 ?: G! q. a9 o, |, ?
2 }% o9 y1 [% P; n" d[p=197, null, left][size=197px]第四步是当新解被确定接受时,用新解代替当前解,[p=197, null, left][size=197px]这只需将当前解中对应于产生新解时的变换部分予以实[p=197, null, left][size=197px]现,同时修正目标函数值即可。此时,当前解实现了一次[p=197, null, left][size=197px]迭代。可在此基础上开始下一轮试验。而当新解被判定为[p=197, null, left][size=197px]舍弃时,则在原当前解的基础上继续下一轮试验。
% R4 T: B1 X6 e( j. K
9 l6 P; X2 o/ c6 d0 {/ z+ p
3 G3 B( X( Y7 Z. R$ a" A[p=197, null, left][size=197px]模拟退火算法与初始值无关,[p=197, null, left][size=197px]算法求得的解与初始解[p=197, null, left][size=197px]状态[p=197, null, left][size=197px]S([p=197, null, left][size=197px]是算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left][size=197px]无关;模拟退火算法具有渐近[p=197, null, left][size=197px]收敛性,[p=197, null, left][size=197px]已在理论上被证明是一种以概率[p=197, null, left][size=197px]l [p=197, null, left][size=197px]收敛于全局最[p=197, null, left][size=197px]优解的全局优化算法;模拟退火算法具有并行性/ l/ t6 @4 y* [6 s! c
3 k( I! o3 p; b7 R
7 x8 v. q$ R" I! h3 F S8 a- Z% o+ i9 C0 j7 U# t
0 E9 P% g R. o5 ]: I# T/ _
- D0 ^$ X1 Y1 ^) ~2 X- k$ y c3 d, P* u2 ~# T
! k! h; c% ]9 |: l+ G- l; w! G" ^$ Q2 m5 t: m$ X0 d
|
zan
|