- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
|---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit) h; n+ E1 D3 V) o' G6 n5 k
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4! ]% l6 O& ?/ E
% k6->k6 k7->k7
: R5 @% i0 @% W5 ^% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
% B2 _0 W& \" i! v/ U( j6 y3 p% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);" y: q9 [( ~' k2 W. P
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);, y. R. E! E0 G( [# J6 b1 U' I8 o
% dLadt = k(7)*C(Hmf);3 j2 C, B! Q" Q% ?' g: Y/ c
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
9 U0 L! V3 j1 s- B& T" }clear all
" f( n/ L% B# |5 Lclc
) H! T+ _: W' C6 S7 R1 I8 R! |" G3 [format long6 N- F+ [' @# W- q% {) g
% t/min Glc Fru Fa La HMF/ mol/L
1 v3 H5 F6 Q& a Kinetics=[0 0.25 0 0 0 0* }/ K0 R( A6 N4 f
15 0.2319 0.01257 0.0048 0 2.50E-04, b( g7 B6 F9 e6 Y
30 0.19345 0.027 0.00868 0 7.00E-049 f8 F, _8 B1 W2 J, n. Q% [0 j
45 0.15105 0.06975 0.02473 0 0.0033+ K1 n% B2 P3 L6 L6 R6 R; S
60 0.13763 0.07397 0.02615 0 0.00428* o; r; a: I' d) O
90 0.08115 0.07877 0.07485 0 0.01405. Z5 P' h# p( M) |% o8 C
120 0.0656 0.07397 0.07885 0.00573 0.02143
) l$ y8 X0 ~0 |7 S$ n( e* d 180 0.04488 0.0682 0.07135 0.0091 0.03623
$ E8 N- E" g7 l; U, [- |3 |7 U$ O 240 0.03653 0.06488 0.08945 0.01828 0.054528 j2 U% s" P: K1 g1 f% U- X' c' D* A
300 0.02738 0.05448 0.09098 0.0227 0.05977 H9 }9 E" c/ I; O
360 0.01855 0.04125 0.09363 0.0239 0.06495];
. L' m0 F4 P/ k3 W3 d4 K2 d6 bk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值+ v1 C( U1 |6 |* W' d
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限3 O4 G; A7 M/ S
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限6 U, S' b4 J- u: f0 R$ i; w
x0 = [0.25 0 0 0 0];
# ]3 k. V7 Q$ [' Zyexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]( B# L6 h" @* H" ~: {
% warning off
$ K& Q' ?! i4 J. h$ @% 使用函数 ()进行参数估计7 Y) v7 I; _* U% x; f; `" Y
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
0 U; @- }- x2 m9 S# S2 ^$ |, G9 Afprintf('\n使用函数fmincon()估计得到的参数值为:\n')
3 v3 F8 c: y7 V+ f# q7 S- Sfprintf('\tk1 = %.11f\n',k(1))
7 i+ @9 L$ _/ Z( K6 i% ofprintf('\tk2 = %.11f\n',k(2))
- `: Y: N6 ~- R( p7 w5 Ffprintf('\tk3 = %.11f\n',k(3))3 f! z9 D" Z4 S8 h+ |& W
fprintf('\tk4 = %.11f\n',k(4))
" `# }" K7 i3 xfprintf('\tk5 = %.11f\n',k(5))
, o# H9 U. i+ k+ Ufprintf('\tk6 = %.11f\n',k(6))
8 `$ P. X- O: p1 p3 l ofprintf('\tk7 = %.11f\n',k(7))( F; |, D( Y5 x8 }6 z; G3 E- \ ]
fprintf('\tk8 = %.11f\n',k(8)) n: p0 P' G& [" C
fprintf('\tk9 = %.11f\n',k(9))
; g& x: a7 s5 \2 C \7 \. g4 |5 x$ efprintf('\tk10 = %.11f\n',k(10)); O0 o/ Q5 `8 `; P; z! d
fprintf(' The sum of the squares is: %.1e\n\n',fval)/ G) [& n- g! v0 L. G: Z
k_fm= k;
6 X( \& U; I$ e# S% warning off! @6 v7 [; }; g2 i& |1 f" t
% 使用函数lsqnonlin()进行参数估计7 V3 ^9 `- {, O
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...* y* R$ ^, z' E
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
+ S) {/ g$ p" A7 d. r$ V/ Zci = nlparci(k,residual,jacobian);
" S' u/ t$ l1 R$ E* W1 {' dfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
/ V4 [, Z- n1 _5 E* Z) D0 zfprintf('\tk1 = %.11f\n',k(1))8 {0 E) d1 j6 n% A$ ^( E
fprintf('\tk2 = %.11f\n',k(2))
9 L3 k2 C5 a! B1 yfprintf('\tk3 = %.11f\n',k(3))1 I. j' @ ]: _, _
fprintf('\tk4 = %.11f\n',k(4))! g d- F6 t. V- d( |& N
fprintf('\tk5 = %.11f\n',k(5))% M2 Z* a) c0 \2 Z4 r
fprintf('\tk6 = %.11f\n',k(6))
3 d4 j) C3 f' M6 `6 u% Kfprintf('\tk7 = %.11f\n',k(7)): R! }0 @" w* O# g
fprintf('\tk8 = %.11f\n',k(8))
( b* H& i& M' ^' `. d. R+ t8 ofprintf('\tk9 = %.11f\n',k(9))
! h4 c1 X4 S, I E) Afprintf('\tk10 = %.11f\n',k(10))
6 F/ _3 G2 Q9 M* gfprintf(' The sum of the squares is: %.1e\n\n',resnorm)4 {& {) Z7 [( ^# E% s4 j
k_ls = k; c* ~: t( e& b; ^+ v! V* w
output1 f3 ~. d( d! z- ]7 C1 U1 d
warning off+ A/ H2 c) b: D* b: g, u3 _
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
; W- |; P& Q' U4 y# v) `( x! H: ek0 = k_fm;
2 q) E/ t4 I: q. H& {: L1 t4 B+ u[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...% e7 r. b; f Z: _4 m d
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
8 \7 Y, t2 z: Tci = nlparci(k,residual,jacobian);
- q; M0 u9 N3 U9 v# j+ ~; Ufprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
4 b$ f, F7 z2 A: Q( K. mfprintf('\tk1 = %.11f\n',k(1))
* |+ Y5 j' X: d* `( Yfprintf('\tk2 = %.11f\n',k(2))
1 V0 ?; Y6 w2 k5 i9 l( S: Tfprintf('\tk3 = %.11f\n',k(3))$ M& n4 r; Y0 T! m0 i* c5 j9 P
fprintf('\tk4 = %.11f\n',k(4))/ p$ o4 R2 U# E" r; w
fprintf('\tk5 = %.11f\n',k(5))
% |9 @! R9 |2 Ufprintf('\tk6 = %.11f\n',k(6))$ ]. S3 N2 N% F+ @$ C! `5 S6 v
fprintf('\tk7 = %.11f\n',k(7))
# f% \$ ?9 G2 ` T }& [( K7 |- ofprintf('\tk8 = %.11f\n',k(8))" _$ p( C: |5 C
fprintf('\tk9 = %.11f\n',k(9))' z# L9 n4 L8 a
fprintf('\tk10 = %.11f\n',k(10))- s3 S! B. h! ]$ {/ A
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)8 R1 J4 f9 F/ E1 U8 U5 D, x/ U
k_fmls = k;) h. ^4 @$ C; l' D& g, _) |/ I
output
8 W! j" n+ q8 r; O4 U+ }6 ?; U* Etspan = [0 15 30 45 60 90 120 180 240 300 360];& [: o n. X2 y$ l. w
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
2 C1 ]5 O, |! y" hfigure;) V! m/ _& m3 `8 Z J$ E
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')/ b) R, {+ V0 V0 C5 ^# ]
figure;plot(t,x(:,2:5));' l5 M) G, l3 o# J9 ?
p=x(:,1:5)
. {4 C! Q- ?' i, B6 Q% G5 dhold on! ^8 j% g' }! ?. v @5 S: S6 K
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real') {; c* u1 f) w! @+ q
% P, D2 B! z3 k) c" j5 ^ K6 h6 u# A$ s$ K
* |* n/ e' a. ?7 T9 ~2 a" f
function f = ObjFunc7LNL(k,x0,yexp)) O' V! p% ^$ X3 h$ s* i7 t
tspan = [0 15 30 45 60 90 120 180 240 300 360];
9 _9 I' i+ S# M$ [[t, x] = ode45(@KineticEqs,tspan,x0,[],k); 7 m2 ?9 {2 P, u& T" l- p# ^' V
y(:,2) = x(:,1);+ y( Y% v9 d: c$ n9 b$ ]9 H
y(:,3:6) = x(:,2:5);
2 M2 \" y+ W& O% J$ rf1 = y(:,2) - yexp(:,2);
; x$ M% ?: r4 I# a8 F$ [+ |f2 = y(:,3) - yexp(:,3);6 N3 f e% r! u3 H: L& W9 D
f3 = y(:,4) - yexp(:,4);2 P, Y/ `2 k# u1 P
f4 = y(:,5) - yexp(:,5);5 X9 S, }/ n4 b$ i- k% r
f5 = y(:,6) - yexp(:,6);+ m! c$ Q% z* d3 V$ ]
f = [f1; f2; f3; f4; f5];
! W) k ?( m: D- w5 ?
$ ^8 {& d. D3 c( g' p) ~ l
7 p, {( K0 _8 N; Z$ t, ~; _- f7 k5 E
function f = ObjFunc7Fmincon(k,x0,yexp)! m0 r- S# K- I4 ?0 D6 G+ C
tspan = [0 15 30 45 60 90 120 180 240 300 360];0 I; A ?: Q- N% b- T
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
: \: F$ ]. J1 l2 d3 ~5 p d. y2 C- Ay(:,2) = x(:,1);8 h5 r+ H5 p, m$ z+ v) P1 l3 |% g# y
y(:,3:6) = x(:,2:5);" d6 `3 I4 R8 h" m4 q+ Y& V, @
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...) Q. h; l6 a- p& Q; O' b3 p9 ]
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
# X- r V! D; w9 N, r2 X + sum((y(:,6)-yexp(:,6)).^2) ; M8 ^1 \# R( m5 |/ ?2 ~
/ f- |6 c. {6 \3 E8 }; L) `
8 T- z9 P- R9 s* ~+ ~5 ?0 ^
6 r/ B8 d- `6 Q; [! ~
! \+ S1 e, p3 D; }" xfunction dxdt = KineticEqs(t,x,k)/ p' W) j2 t; ^0 X) h- K
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
/ A6 L+ a1 L) H, N, CdFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
0 W8 e4 K" l: r1 M1 c5 y0 r1 FdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
6 b; _" E6 l3 F f& Z( Z) TdLadt = k(7)*x(5);
1 O9 m+ F( G: p* P/ ?# [dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);5 r+ E/ a/ X4 ?8 n$ u
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
/ S; _5 p5 L4 G% T# x
2 q& z1 Q, h# @- Q
4 I; t/ @+ z0 q8 j) I |
-
-
Glc.zip
2.33 KB, 下载次数: 0, 下载积分: 体力 -2 点
M文件以及数据
zan
|