- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit' d. t9 p# N7 A* @" |( Y% _
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4% @! n9 M) E" A1 D; e8 N6 ^
% k6->k6 k7->k7
: u" D1 X8 o( X X% Z( x% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
$ X U( q! o n% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
- ?: |9 \4 G0 C/ V% g- s% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
) d7 Z) u) m2 }9 [" Y! O% dLadt = k(7)*C(Hmf);0 `! G3 ]0 T& i+ a5 D6 K9 T
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
J8 X% i. F0 j" v. D+ G- P0 Gclear all. |7 R8 n5 N7 I4 E
clc
a6 C. _& g1 s$ \, Y9 tformat long' W+ v" E H$ a) J6 X
% t/min Glc Fru Fa La HMF/ mol/L 1 Y G; _# U8 _7 _
Kinetics=[0 0.25 0 0 0 0# Z5 k+ c+ H2 [" t
15 0.2319 0.01257 0.0048 0 2.50E-04: J, x& e/ N3 ?; s2 I0 y: c x1 G
30 0.19345 0.027 0.00868 0 7.00E-04# x$ p" D+ E% y' i, X
45 0.15105 0.06975 0.02473 0 0.0033! s. n h7 m I
60 0.13763 0.07397 0.02615 0 0.00428
6 S0 r' M0 U% `, c( R 90 0.08115 0.07877 0.07485 0 0.01405! Y. s& `5 F, l
120 0.0656 0.07397 0.07885 0.00573 0.02143
% k$ P' z4 |- D3 h) t 180 0.04488 0.0682 0.07135 0.0091 0.03623
7 a3 W% w; s: `# l" b+ H 240 0.03653 0.06488 0.08945 0.01828 0.05452
5 Z/ g1 F2 E: z$ {( p" ? 300 0.02738 0.05448 0.09098 0.0227 0.05973 G% c0 ?4 j; E0 A# j( X$ X
360 0.01855 0.04125 0.09363 0.0239 0.06495];9 w" A; [" `9 }" C
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
6 k9 O- M* g3 l7 m: Olb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限! R' K5 n. p( z6 Q* B5 E9 c
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限4 X4 y! M( y% C O+ _) D
x0 = [0.25 0 0 0 0];
( r9 @/ Q$ J9 s) T3 W) V7 Byexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
: X0 T4 V* j/ ~% c9 x% warning off
# n6 z& Q/ R4 ]* h2 R% 使用函数 ()进行参数估计
+ }' ?9 a4 I* Y$ F[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
1 f/ C& F0 g. y" a( j2 o1 gfprintf('\n使用函数fmincon()估计得到的参数值为:\n')( v2 A0 P% u- A/ N
fprintf('\tk1 = %.11f\n',k(1))
* I9 [" u; U" d# C. v* c$ Ifprintf('\tk2 = %.11f\n',k(2))
: ]2 T* o7 B8 `6 Jfprintf('\tk3 = %.11f\n',k(3))
w) V3 {3 I, b- t$ c3 I0 V1 ?6 c3 i2 bfprintf('\tk4 = %.11f\n',k(4))2 X6 v' {* U! c, ]' v) C9 \6 T: t% |% ]3 \
fprintf('\tk5 = %.11f\n',k(5))
. e8 @6 l, e7 u+ D( xfprintf('\tk6 = %.11f\n',k(6))6 L+ A9 j" U8 Z- q' _5 | A2 K3 v
fprintf('\tk7 = %.11f\n',k(7))! C! F' V' x/ b
fprintf('\tk8 = %.11f\n',k(8))6 y) o1 b) g; k
fprintf('\tk9 = %.11f\n',k(9))6 S9 U( v0 j2 F- |4 G
fprintf('\tk10 = %.11f\n',k(10))) F8 m) Q9 [, G4 T/ G' r( w
fprintf(' The sum of the squares is: %.1e\n\n',fval)4 d9 E: {1 Z2 e9 H! R
k_fm= k;
7 V3 ?& r. M ?! [$ @" i4 s; \% warning off
& f) D( i4 E# A' T% 使用函数lsqnonlin()进行参数估计8 r* P( }4 t/ P( S
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
% N2 A! s5 P' m3 W" Q. l lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); : j% m- C) o$ h) E, Z0 A7 V
ci = nlparci(k,residual,jacobian);+ }$ l+ t; d- Q5 f: v1 N; S; U
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
3 E3 c* N2 l" C6 `/ Hfprintf('\tk1 = %.11f\n',k(1)). Z+ X# T( r. L# o* O0 t
fprintf('\tk2 = %.11f\n',k(2))- \. t- W! @6 T
fprintf('\tk3 = %.11f\n',k(3)); K A+ s9 n3 R6 i/ D
fprintf('\tk4 = %.11f\n',k(4))9 Q* [+ \8 F& R- J
fprintf('\tk5 = %.11f\n',k(5))( k/ w ?* C) Z5 G" ?& z! ~7 t: H
fprintf('\tk6 = %.11f\n',k(6))( X8 C$ a3 O9 r" L$ z3 @9 W
fprintf('\tk7 = %.11f\n',k(7))
; x6 D2 E1 W# ?2 P: ], dfprintf('\tk8 = %.11f\n',k(8))
4 Z' }$ E8 o6 [3 G( F' ufprintf('\tk9 = %.11f\n',k(9)). C6 f, d+ S( \: U
fprintf('\tk10 = %.11f\n',k(10))4 p( z8 N0 ]9 J! u8 S5 u
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
' A+ ?: ?/ |1 _- p( \) z. U7 @k_ls = k;
( p2 Q! c9 b# K( `( E0 p7 i0 Qoutput
' m7 Q! F4 [4 ]7 ~' Jwarning off5 a( U9 u' Q& N5 \
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
# s* {8 M h+ M: y+ [3 fk0 = k_fm;
4 D! t1 Q6 S; R& ]7 u) }[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
; x# T$ s7 U w% b& c1 y: J& b: w lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); & B3 |, ^0 L# Y' I2 ^
ci = nlparci(k,residual,jacobian);
, Y. d% p% }2 T" v6 }fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')/ d& W' ] B0 l3 H- h# h
fprintf('\tk1 = %.11f\n',k(1))
3 e5 S' m g8 H' {! Q a2 S7 w- Ifprintf('\tk2 = %.11f\n',k(2))% N. A) n, ^$ t3 |: w0 S6 P
fprintf('\tk3 = %.11f\n',k(3))
U5 ?. w0 @/ e: `fprintf('\tk4 = %.11f\n',k(4))
# _, i7 E0 h+ Z5 ^) n2 y- qfprintf('\tk5 = %.11f\n',k(5))( @5 n6 }7 f/ h
fprintf('\tk6 = %.11f\n',k(6))
" y, m+ N9 U2 c, Q* n9 x* d L6 p7 wfprintf('\tk7 = %.11f\n',k(7))
8 O+ z( R7 f l# m1 r, f9 n' Tfprintf('\tk8 = %.11f\n',k(8))6 U" c5 X$ q6 i; s, m
fprintf('\tk9 = %.11f\n',k(9))
2 w( w ~9 \5 o# g6 Mfprintf('\tk10 = %.11f\n',k(10))
2 k; b% {7 d7 W2 n5 gfprintf(' The sum of the squares is: %.1e\n\n',resnorm)6 O% m; H- K4 u2 g. ^8 Q( _1 u5 A
k_fmls = k;
) N& F. s6 @% uoutput
. E* o# a7 e( L# N" \/ _' [1 ytspan = [0 15 30 45 60 90 120 180 240 300 360];
& L# i2 M4 n# X1 Y[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
6 o$ t/ F# v' P$ }9 ?7 Yfigure;7 l `5 [5 t/ Z# o# h( P
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')/ Q) \; b8 L8 s. B& B0 \% l
figure;plot(t,x(:,2:5));
( H6 R7 V. W" x8 J; o. K6 ep=x(:,1:5)
! m- y" G. w8 k: a. M) t( s' ?hold on
5 H5 [1 ^) W4 r6 R2 `plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')5 F1 o1 T4 S6 e1 _5 g
# c7 o8 ^5 o2 a! W4 x
3 \9 x' r" P3 u3 Z) A
" Q9 u/ U4 `( G# R
function f = ObjFunc7LNL(k,x0,yexp)
* K3 s" A$ o. h, l4 k# ?7 x2 jtspan = [0 15 30 45 60 90 120 180 240 300 360];
) X$ C, [# n! k[t, x] = ode45(@KineticEqs,tspan,x0,[],k); : Q( Z; m! N% w- A6 @
y(:,2) = x(:,1);: v" }4 y# u4 U! k8 `6 L9 U
y(:,3:6) = x(:,2:5);; a u, {9 C+ f+ D# P0 v
f1 = y(:,2) - yexp(:,2);0 n! y- q# A5 v2 O' [4 C/ d
f2 = y(:,3) - yexp(:,3);/ L7 S- G4 ^; [) m ]
f3 = y(:,4) - yexp(:,4);
3 _& t. J. h7 u- lf4 = y(:,5) - yexp(:,5);
( c3 s; C4 Z/ tf5 = y(:,6) - yexp(:,6);4 e5 Y- `% l4 c9 R" E. C. }
f = [f1; f2; f3; f4; f5];/ u) K6 Z! T5 W% e1 J
4 [0 A, ^) S* t' j8 D9 g
9 u/ H3 z; ^+ Y$ l$ Q. u. T, u
# l; m+ h, N3 ]5 F* {3 vfunction f = ObjFunc7Fmincon(k,x0,yexp)
- V3 f3 t" v ztspan = [0 15 30 45 60 90 120 180 240 300 360];4 g# f- o' O9 ?5 l' W" K& V6 D
[t x] = ode45(@KineticEqs,tspan,x0,[],k); / B# t# z s/ z
y(:,2) = x(:,1); b( t( M3 m) W k2 `( f
y(:,3:6) = x(:,2:5);
6 E! h" f) d" Wf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...) q8 L$ x; A5 {7 q; l/ i8 e* e
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...5 J& v2 P* f2 ?# m
+ sum((y(:,6)-yexp(:,6)).^2) ;) Z7 `. w0 i4 R, t8 k
9 h" q3 x5 o/ A7 e8 E! r, F- g: u
; c% _2 E' ]$ C0 i5 f
2 F5 M) f6 \! S- i
; v4 `" F' Y/ ?7 X' |6 B8 ffunction dxdt = KineticEqs(t,x,k)0 B' t& x$ d# j- _5 P( A; [
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
0 f; i" E- D9 tdFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
# u. P% q( ?. P0 d2 F5 b: q9 w# NdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);3 P* R5 B8 ~ K
dLadt = k(7)*x(5);
# D8 E! @9 [# ^$ x# g8 W7 cdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);+ r2 O& l$ p. f! ] x; V
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];" h+ [8 k1 D( k1 X9 l4 l( j# A' I
8 t5 N. L5 f2 L4 l0 o
0 k5 j2 l8 a7 o0 [, x |
-
-
Glc.zip
2.33 KB, 下载次数: 0, 下载积分: 体力 -2 点
M文件以及数据
zan
|