- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit
2 L) c* | V, A" W9 ~1 r' |. ?% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4 w+ i& H# k: c$ d7 F+ x
% k6->k6 k7->k7
. w# t: O3 B+ f$ D9 f7 J% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);# J/ w! r) @, |+ c1 a
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
" r" A1 I \6 E G* ]% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);2 M2 Z, t$ U6 B8 O8 A! {+ y
% dLadt = k(7)*C(Hmf);. M" h3 O- \& p& V, T; V5 J U
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
% R7 h( A9 o; u9 I$ M. y- |5 `clear all
" d6 o/ R9 P, i5 [5 O# Rclc7 K4 o1 k7 p% S& b/ g/ x
format long
! v1 h. Q% Q" f# l( ]# |% t/min Glc Fru Fa La HMF/ mol/L + l3 \4 P' _- k0 U2 \
Kinetics=[0 0.25 0 0 0 0* v3 D' Y" ?# C6 T
15 0.2319 0.01257 0.0048 0 2.50E-04
[" b0 c! u5 B- g/ Y- d7 c 30 0.19345 0.027 0.00868 0 7.00E-04
* M. t9 f% M$ d% X' H0 h$ q8 ^% z' Y2 @ 45 0.15105 0.06975 0.02473 0 0.0033 L" ?1 I* [" F7 J
60 0.13763 0.07397 0.02615 0 0.004284 A/ e& u! z4 ~0 p/ d! q
90 0.08115 0.07877 0.07485 0 0.01405
$ y. K0 o5 o$ U1 s5 M, |$ K1 I 120 0.0656 0.07397 0.07885 0.00573 0.02143! X8 q& {6 n. _6 l2 ~4 Q& S
180 0.04488 0.0682 0.07135 0.0091 0.03623
- |6 b$ a* t z' \ c* a 240 0.03653 0.06488 0.08945 0.01828 0.05452- g2 B0 {; l" l3 I2 M3 N0 w
300 0.02738 0.05448 0.09098 0.0227 0.0597
8 \6 ?4 f3 i& j3 Z 360 0.01855 0.04125 0.09363 0.0239 0.06495];
) \4 H) @2 |& n# m y s) gk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
8 w6 Z; j7 f' qlb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限& J1 k/ i) l, ]- t8 U1 Q$ G3 r; t
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
& i6 V9 o, _/ H$ c4 a* g0 y c; E/ \x0 = [0.25 0 0 0 0];
5 ]5 Q" g i R% t; H; R' ^! Byexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
) C2 h, Q( y/ a# m, U7 e% warning off9 e5 v: b7 I) n) f( u& L3 _" o
% 使用函数 ()进行参数估计+ S& }, W- {" l
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
; K) i( b+ t1 y5 g1 W2 p# Ofprintf('\n使用函数fmincon()估计得到的参数值为:\n')
8 w+ @2 _, P& v+ S; Xfprintf('\tk1 = %.11f\n',k(1))- y2 @3 }9 m n1 y% [* m; ?: J5 U
fprintf('\tk2 = %.11f\n',k(2))
6 a9 m& Q. ]) N- Ifprintf('\tk3 = %.11f\n',k(3))
! e+ r) p ]5 p7 m9 ]; Mfprintf('\tk4 = %.11f\n',k(4))9 u9 p r! \) w, n6 o
fprintf('\tk5 = %.11f\n',k(5))8 w" P6 L! g8 ]9 R
fprintf('\tk6 = %.11f\n',k(6))+ H- F, Z2 u, K
fprintf('\tk7 = %.11f\n',k(7))4 L! k2 A% s K* n& p
fprintf('\tk8 = %.11f\n',k(8))3 i/ p) Y8 P$ Q9 N" q6 E# N
fprintf('\tk9 = %.11f\n',k(9))$ U) X3 {& r% H( H+ S9 a
fprintf('\tk10 = %.11f\n',k(10))1 I$ P" }0 l9 `; }/ x) y# _% f& X
fprintf(' The sum of the squares is: %.1e\n\n',fval)
( x& ?/ [- l9 R+ v% ak_fm= k;8 j3 S& T$ J# F- p6 g" U
% warning off
$ L" f; V+ B4 o6 }# w' a! h- i( a% 使用函数lsqnonlin()进行参数估计4 g. n3 e4 n1 q9 M4 P) V, \
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
6 g/ \& n% Z9 d( I" ~1 m3 g lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
$ E R1 ?7 K1 a7 L& s: b3 x1 b8 xci = nlparci(k,residual,jacobian); f" J1 U' P- ]/ ?
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
' [- R1 v$ V, U+ ?fprintf('\tk1 = %.11f\n',k(1))
2 N4 |% T" z; k! \7 j. mfprintf('\tk2 = %.11f\n',k(2))
) T! }8 j- }9 J( D9 Kfprintf('\tk3 = %.11f\n',k(3))
- }* t& e: U' ufprintf('\tk4 = %.11f\n',k(4)) w& e" r; n x, a" o
fprintf('\tk5 = %.11f\n',k(5))8 X* R# ^: r- L1 @
fprintf('\tk6 = %.11f\n',k(6))
' e, X# d1 ~) j& K& [+ Y# Efprintf('\tk7 = %.11f\n',k(7))
+ q5 X3 [5 ^+ r8 n3 H: U9 [7 nfprintf('\tk8 = %.11f\n',k(8))
" |* P i* G+ g$ efprintf('\tk9 = %.11f\n',k(9)). J8 x7 y. z0 x, P3 ^' L3 e0 _6 l
fprintf('\tk10 = %.11f\n',k(10))
9 U3 T0 h7 \; e: pfprintf(' The sum of the squares is: %.1e\n\n',resnorm); _" X/ T2 N& Q
k_ls = k;, v+ ]0 t1 y- E, x$ U- |2 \$ c
output8 l# _+ M5 ` H1 v% V9 B% W
warning off Y9 b/ m) k7 u) s. E# ~, N2 S
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
8 @5 P) y. u m2 b0 Y3 Zk0 = k_fm;/ T2 q g* G0 R& z; x
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...8 C: s) A0 l* p
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); 2 I% J& n! |0 }% a0 `2 Y$ g
ci = nlparci(k,residual,jacobian);
Q# K9 L) J" \" Z5 r0 ffprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
! `8 G8 s8 Y/ n% K5 U) [( xfprintf('\tk1 = %.11f\n',k(1))
6 z9 i9 N: x- ^* _fprintf('\tk2 = %.11f\n',k(2))
; K! t+ x* a5 p( j5 ^) ifprintf('\tk3 = %.11f\n',k(3))
7 g3 D3 a+ I x/ t# |9 Efprintf('\tk4 = %.11f\n',k(4)), ]& L, p; S) B& x/ S
fprintf('\tk5 = %.11f\n',k(5))! _2 }# Q& @5 \( \8 C0 q: K
fprintf('\tk6 = %.11f\n',k(6))
# {$ l# P/ \. l0 Q5 g1 cfprintf('\tk7 = %.11f\n',k(7))
' S7 L4 E$ v% Mfprintf('\tk8 = %.11f\n',k(8))
- ~$ J5 G" O( ^" U) wfprintf('\tk9 = %.11f\n',k(9))+ i! m8 ]8 x, b( F
fprintf('\tk10 = %.11f\n',k(10)): S) O+ j9 R8 a/ C) O( `+ `
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)' _1 w' g) n' X9 [
k_fmls = k;* {, j5 N2 `+ T ]
output3 O e/ v. [( l+ d- W: n z# n
tspan = [0 15 30 45 60 90 120 180 240 300 360];
' [( t& _, L K4 x[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); * D) |6 Z/ E: x7 \0 j/ f
figure;2 o" }, P. _% U
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real'); R: ^/ y: ?6 b( q
figure;plot(t,x(:,2:5));" N* }+ Q* ]2 W
p=x(:,1:5)
2 g+ E u1 G1 W. Q5 whold on7 p3 y1 J. N7 a; A. T# G: q, k* s( Y
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')' M# ], q) p" t* K) Y1 p; z8 D
6 U ^' Q6 D8 O& D% t
& K3 t" z7 j0 S) V# Q) q3 x' w
1 N* B2 \( O) ^6 V2 m- \
function f = ObjFunc7LNL(k,x0,yexp)
% k+ T" z0 p8 F% otspan = [0 15 30 45 60 90 120 180 240 300 360];
+ x, h! ]9 h9 S! X# ]4 c# R9 c[t, x] = ode45(@KineticEqs,tspan,x0,[],k); # y- \0 J+ Z% q* B' s6 _
y(:,2) = x(:,1);! j* x% S% T; ]' D7 [
y(:,3:6) = x(:,2:5);" K+ h8 x& m' y8 W+ U4 e- W2 `( V
f1 = y(:,2) - yexp(:,2);
O; H' _, @% v* i8 H4 r. O/ Df2 = y(:,3) - yexp(:,3);
* ?6 B7 W) N' E7 {% l3 ~f3 = y(:,4) - yexp(:,4);/ m8 E3 n- G/ i0 u% q/ J% Z
f4 = y(:,5) - yexp(:,5);
1 R3 M' G5 t; h+ `/ `* @/ h8 wf5 = y(:,6) - yexp(:,6);
) P. f, m! ~) C. f: ]7 \5 Bf = [f1; f2; f3; f4; f5];6 Q- Z% }* }& H7 i0 D9 _7 I/ w
$ o* a4 [7 } p/ h' h3 n
* `" ?$ Y# q: u! w. Q
6 X( C' G$ G# |7 R% ?% S' ]function f = ObjFunc7Fmincon(k,x0,yexp)
* L" Q, R- Q( y) b% k- V* Ttspan = [0 15 30 45 60 90 120 180 240 300 360];5 T u2 `( s7 y: d
[t x] = ode45(@KineticEqs,tspan,x0,[],k); 4 }. b8 g4 b% Y; W) x
y(:,2) = x(:,1);
% Y+ }( n7 A+ t2 L& Qy(:,3:6) = x(:,2:5);
5 a7 c3 E' [+ ^7 V af = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) .... k: f# n( L! C% f8 W' S' |
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
2 G+ X* V! \& Z9 \6 v6 |0 q/ m + sum((y(:,6)-yexp(:,6)).^2) ;
" K$ g7 K- F: J0 `$ t/ V5 B7 d6 V) W) H6 G
8 f( ^" l0 E, s5 \' @. w- m5 v4 @1 b4 i& Y! E1 x0 v! X+ U/ v
7 g8 V6 Z, Q ?$ P7 G
function dxdt = KineticEqs(t,x,k)
0 X2 w* } _2 Y- ? b9 SdGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);, ?# m% d/ n% _# {' r
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);5 E1 g$ m* F$ j( O) C
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
: j& g; o' y1 Y/ m+ ZdLadt = k(7)*x(5);
; _5 Y7 w* k) ~- jdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
2 Y% O7 }( n$ v+ q$ w* R' q2 ~6 Ddxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];: Z& Y% x6 v( K' L* V+ ?) }2 H
" M s% X& } U* ~ _+ ] G/ P/ ^+ u& \9 e2 R0 O
|
zan
|