QQ登录

只需要一步,快速开始

 注册地址  找回密码

tag 标签: 微积分

相关帖子

版块 作者 回复/查看 最后发表
微积分入门书籍 attachment 微分方程 我就在你背后 2012-1-13 7 10400 beiyou 2022-10-6 20:00
浙大微积分内部实用资料 个人认为i很值得看 attachment 数学基础 葬、月.兰 2012-3-9 15 6056 hylpy 2014-9-15 14:46
上传几本数学书··· attachment 分析学 guanyuhang 2012-4-17 8 4137 批饿的 2012-12-23 19:06
高等微积分~ attachment 数模资源交流 guanyuhang 2012-4-20 6 4275 guanyuhang 2012-6-22 13:22
线性代数的应用 attachment 数学公共课 qqqq77722 2012-4-23 21 6002 星河万里 2022-10-9 21:49
微积分和离散数学练习题 attachment 数模资源交流 guanyuhang 2012-5-14 5 4080 星空下的流星 2012-5-18 21:58
数模与我 ——谨以此文献给所有数学建模爱好者 数模经验分享 ultra1989 2012-5-24 937 146589 1253686426 2025-7-29 20:05
金融用~~~~~41页的小巧随机微积分小册子!!分享! attachment 金融数学 Solo. 2012-6-2 0 4290 Solo. 2012-6-2 22:51
周期函数的傅立叶级数及非周期函数的傅立叶级数(课件) - [!price! 3 点体力] attachment 分析学 逸兴揽月 2012-6-29 1 2619 wssl103050 2012-6-29 08:54
微积分基本介绍的课件 - [!price! 2 点体力] attachment 微分方程 逸兴揽月 2012-7-4 4 3130 逸兴揽月 2012-12-14 16:51
微积分——函数,数列极限及收敛准则 - [!price! 2 点体力] attachment 微分方程 逸兴揽月 2012-7-4 0 2172 逸兴揽月 2012-7-4 16:28
微积分——极限概念,级数概念及收敛法 attachment 微分方程 逸兴揽月 2012-7-4 0 2687 逸兴揽月 2012-7-4 23:32
数值分析课程的部分教学课件 attachment 数模资源交流 Sabayon~ 2012-8-17 3 3094 526500289 2013-2-2 13:04
从数学建模开始 全国大学生数学建模竞赛(CUMCM) Distinctive 2012-9-17 2 2757 sdccumcm 2012-9-18 20:22
[已解决]请问各位大大,在maple中,如何化简一个微积分算子? attach_img Maple论坛 jzxue 2012-11-29 8 4538 jzxue 2012-12-2 07:53
2013年高考数学总复习 3-4 定积分与微积分基本定理(理)测试 新人教B版 attachment 高考数学&高考数学复习&高考数学真题 梦想在飞 2013-5-7 0 1736 梦想在飞 2013-5-7 13:22
2013年高考数学总复习 3-4 定积分与微积分基本定理(理)课件 新人教B版 attachment 高考数学&高考数学复习&高考数学真题 梦想在飞 2013-5-7 2 2084 数学导航网 2013-7-13 13:31
悬赏 关于怎样求部分球体的表面积公式,悬赏 - [悬赏 8 点体力] attach_img 数模问题互助 数学不烦 2013-8-10 3 8544 magic2728 2013-8-11 00:54
微积分与概率统计:生命动力学的建模:英文版 attachment 生物数学 madio 2013-8-18 9 9337 变动的永恒 2014-9-18 22:46
商品 向量微积分、线性代数和微分形式(第3版)(英文影印版) 麦斯数学书店-新九章数学书店 uniqueAngel 2013-11-8 1 5713 uniqueAngel 2013-11-8 10:36

相关日志

分享 微积分与极限理论
guogool 2014-2-5 09:53
无穷作为一个极富迷人魅力的词汇,长期以来就深深激动着人们的心灵。彻底弄清这一概念的实质成为维护人类智力尊严的一种需要。而数学是 “ 研究无限的学科 ” ,因此数学就责无旁贷地担当起征服无穷的重任。我们在本文中将简要介绍一下数学中无穷思想发展的历程光辉的起点:数学无穷发展的萌芽时期早在远古时代,无限的概念就比其它任何概念都激动着人们的感情,而且远在两千年以前,人们就已经产生了对数学无穷的萌芽认识。 在我国,著名的《庄子》一书中有言: “ 一尺之棰,日取其半,而万世不竭。 ” 从中就可体现出我国早期对数学无穷的认识水平。而我国第一个创造性地将无穷思想运用到数学中,且运用相当自如的是魏晋时期著名数学家刘徽。他提出用增加圆内接正多边形的边数来逼近圆的 “ 割圆术 ” ,并阐述道: “ 割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。 ” 可见刘徽对数学无穷的认识已相当深刻,正是以 “ 割圆术 ” 为理论基础,刘徽得出徽率,而其后继者祖冲之更是得出了圆周率介于 3.1415926 与 3.1415927 之间的领先国外上千年的惊人成果。 在国外,早在毕达哥拉斯关于不可公度量的发现及关于数与无限这两个概念的定义中已孕育了微积分学的关于无穷的思想方法。德谟克利特和柏拉图学派探索过无穷小量观念。欧多克索斯、安蒂丰、数学之神阿基米德所运用的穷竭法已备近代极限理论的雏形,尤其是阿基米德对穷竭法应用之熟练,使后人感到他在当时就已接近了微积分的边缘。 由此,我们可以看到在数学无穷思想发展之初,古人就已在这个领域开创了一个光辉的起点。 首创风波:芝诺悖论 虽说,古人对无穷已有了较深刻认识,然而人们对无限的认识是缺乏严密的逻辑基础的。可以说,对于只熟知有限概念的人们来说 “ 无限 ” 这一概念仍然是陌生与神秘的。芝诺悖论的提出清楚地表明了这一点。 芝诺,公元前五世纪中叶古希腊哲学家。他提出的四个悖论虽是哲学命题。但却对数学无穷思想的发展产生了直接且深远影响。这里仅举其悖论之一。 阿基里斯悖论:跑得最快的阿基里斯永远追不上爬得最慢的乌龟。大意是说甲跑的速度远大于乙,但乙比甲先行一段距离,甲为了赶上乙,须超过乙开始的 A 点,但甲到了 A 点,则乙已进到 A1 点,而当甲再到 A1 点,则乙又进到 A2 点,依次类推,直到无穷,两者距离虽越来越近,但甲永远在乙后面而追不上乙。 这显然违背人们常识的芝诺悖论,因与无限问题密切相连,就使得古希腊人对无穷有些望之却步静而远之了。同时也导致古希腊数学家不得不把无限排斥在自己的推理之外了。 芝诺悖论就这样一直困惑着人们,问题的症结何在呢? 崭新一页:微积分学的诞生 随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题 …… 初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗 …… 并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。 风波再起:贝克莱悖论 通往真理的路总是坎坷不平,布满了艰辛,探求无穷之径更绝非坦途。 十七世纪后期,牛顿、莱布尼兹创立微积分学,成为解决众多问题的重要而有力的工具,并在实际应用中获得了巨大成功,然而,微积分学产生伊始,迎来的并非全是掌声,在当时它还遭到了许多人的强烈攻击和指责,原因在于当时的微积分主要建立在无穷小分析之上,而无穷小后来证明是包含逻辑矛盾的。 1734 年,大主教贝克莱写了本《分析学家》的小册子,在这本小册子中,他十分有效地揭示了无穷小分析方法中所包含的这种逻辑矛盾。这就是所谓的 “ 贝克莱悖论 ” 。笼统地说,贝克莱悖论可以表述为 “ 无穷小量究竟是否为零的问题 ” 就实际应用而言,它必须既是零,又不是零。而从形式逻辑角度而言,这无疑是一个矛盾。贝克莱悖论,动摇了人们对微积分正确性的信念,在当时数学界引起了一定混乱,从而导致了数学史上所谓的第二次数学危机。出路在何方? 发明的世纪:十八世纪 微积分产生后,一方面在应用中大获成功,另一方面其自身却存在着逻辑矛盾,即贝克莱悖论,也就是说,正确的(尤其是在几何应用上是惊人的)结果却是通过肯定不正确的数学途径得出的。这把数学家们推到了尴尬境地。在对微积分的取舍上到底何去何从呢? “ 向前进,向前进,你就会获得信念! ” 达朗贝尔吹起不顾一切奋勇向前的号角,在此号角的鼓舞下,十八世纪的数学家们开始不顾基础的不严格,论证的不严密,而是更多依赖于直观去开创新的数学领地。于是一套套新方法、新结论以及新分支纷纷涌现出来。经过一个多世纪的漫漫征程,几代数学家,包括达朗贝尔、拉格朗日、贝努力家族、拉普拉斯以及集众家之大成的欧拉等人的努力,数量惊人前所未有的处女地被开垦出来,微积分理论获得了空前丰富。因而数学史家把这一时期称为发明的世纪。 光辉乐章的不和谐音 微积分产生之初,对基础不牢的指责,以及由此引发的争论,一直就是微积分学奏出的光辉乐章中的不谐和音。然而在十八世纪,它被微积分应用中惊人的成功所赢得的震耳掌声暂时掩盖了。经过数学发明的十八世纪后,数学建筑扩大了,房子盖得更高了,而基础却没有补充适当的强度。十八世纪粗糙的,不严密的工作导致谬误越来越多的局面,不谐和音的刺耳开始震动了数学家们的神经。下面仅举一无穷级数为例。 无穷级数 S = 1 - 1 + 1 - 1 + 1……… 到底等于什么? 当时人们认为一方面 S =( 1 - 1 )+( 1 - 1 )+ ……… = 0 ;另一方面, S = 1 +( 1 - 1 )+( 1 - 1 )+ ……… = 1 ,那么岂非 0 = 1 ?这一矛盾竟使傅立叶那样的数学家困惑不解,甚至连被的后人称之为数学家之英雄的欧拉在此也犯下难以饶恕的错误。他在得到后,令 x= - 1 ,得出 S = 1 - 1 + 1 - 1 + 1……… = 1 / 2 !   由此一例,即不难看出当时数学中出现的混乱局面了。问题的严重性在于当时分析中任何一个比较细致的问题,如级数、积分的收敛性、微分积分的换序、高阶微分的使用以及微分方程解的存在性 …… 都几乎无人过问。尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。这样,消除不谐和音,把分析重新建立在逻辑基础之上就民成为数学家们迫在眉睫的任务。 重建微积分基础 十八世纪富有成果然而欠严谨的工作,导致数学中出现了暂时的混乱局面。到十九世纪,批判、系统化和严密论证的必要时期降临了。 使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于 1820 年研究了极限定义,并创造性地用极限理论把微积分学中的定理加以严格的系统的证明,使微积分学有了较坚实的理论基础,同时柯西也因之成为加固微积分学基础的第一位巨匠。但柯西工作中仍存在着两点主要的不足。其一,他的极限定义用了描述性语言 “ 无限的趋近 ”“ 随意小 ” ,不够精确。这一点由德国数学家魏尔斯特拉斯给出精确描述数列极限的 “ε-δ ” 方法和函数极限的 “ε-δ” 方法,把微积分奠基于算术概念的基础上,获得了圆满解决。其二,他对单调有界定理的证明借助了几何直觉。魏尔斯特拉斯、戴德金、康托尔各自经过自己独立深入的研究,都将分析基础归结为实数理论,并于七十年代各自建立了自己完整的实数体系,这样数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。重建微积分学基础,这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成了。微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。 康托尔的不朽功绩:向无限冒险迈进 十九世纪,由于众多杰出数学家的努力,微积分工具被改进为严格的分析体系。同时由于严格追问微积分的逻辑,德国数学家康托尔把无穷集合引入词汇,从而发现了无穷集这一数学新词汇,开辟出一个广大而又从未人知的世界。 康托尔以其集合论的成就被誉为对 20 世纪数学发展影响最深的学者之一。他从研究 “ 收敛的傅立叶级数所表示的函数存在不连续 ” 这一事实,提出无穷集合的概念,并以一一对应关系为基本原则,寻求无穷集合的 “ 多少 ” 关系。他把两个能一一对应的集合称为同势,利用势他将无限集进行了分类,最小的无限集为可数集 a ,即指与自然数集等势的无穷集。进一步,康托尔证明实数集的势 ca ,一切实函数的势 fc, 并且对任何一个集合,均可造出一个具有更大势的集合,即是说没有最大的势。鉴于此, 1896 年康托尔根据无穷性有无穷多学说,制订了无限大算术,对各种无穷大建立了一个完整序列,他用希伯来字母表中第一个字母阿列夫来表示这些数。于是, 直至无穷。无穷集合自身又构成了一个无穷序列。所谓楼外有楼,天外有天了。这就是康托尔创立了超限数理论。康托尔的工作,在发表之初遭到许多人的嘲笑与攻击。克罗内克有句名言:上帝创造了自然数,其它都是人为的。他完全否认并攻击康托尔的工作,称 “ 康托尔走进了超限数的地狱 ” ,更有人嘲笑康托尔关于无穷的等级的超限数理论纯粹为 “ 雾中之雾。前后经过 20 余年,康托的工作才最终获世界公认,并赢得极大赞誉。罗素称赞说: “Cantor 的工作可能是这个时代所能夸耀的最伟大的成就。 ” 希尔伯特称其超限理论为 “ 数学思想的最惊人的产物,在纯粹理性的范畴中人类智力的最美的表现之一。 ” 康托集合论的提出标志了近代数学的开端。他的观点中,无穷集合是被看作一个现实的,完成的,存在着的整体,是可认识,可抓住的东西。他的无穷集合理论令世人耳目一新。 中途的辉煌 极限理论、实数理论使微积分学建立在严格的逻辑基础之上,而实数论又可在自然数论和无穷集合论的基础上发展起来,进一步自然数论完全可在集合论中推出。这样一来,实数论的融贯性就归于集合论的融贯性,归结到集合论,看来数学绝对严格的目的要达到了。 1900 年在世界数学家大会上,著名数学家庞加莱郑重宣布: “ 现在我们可以说,数学最终的严格性基础已经确立了。 ” 表达了数学家们欣欣自得的共同心情。尤其通过康托尔的工作,数学家们找到了营造数学大厦的基石:集合论。而他的无穷集合,也就成了数学家们的伊甸园。这样,从微积分诞生之日起,数学家们历经 200 多年的艰苦努力,终于迎来了辉煌的胜利。 一波三折:罗素悖论的提出及解决 正当数学家们在无穷集合的伊甸园中优哉游哉,并陶醉于数学绝对严格性的时候,一个惊人的消息迅速传遍了数学界。 “ 集合论是有漏洞的! ” 这就是, 1902 年,罗素得出的结论。 罗素构造了一个集合 U , U 由所有不属于自身的集合组成, U 显然存在,但 U 是否属于自身呢?无论回答是否都将导致矛盾,这就是著名的罗素悖论。罗素悖论相当简明,以致几乎没有什么可以辩驳的余地,然而它却动摇了整个数学大厦的基石:集合论。 “ 绝对严密 ”“ 天衣无缝 ” 的数学,又一次陷入了自相矛盾与巨大裂缝的危机之中。原本已平静的数学水面,因罗素悖论的投入,又一石激起千重浪,令数学家们震惊之余有些惊慌失措,这就导致了数学史上所谓的 “ 第三次数学危机。 ” 危机是由康托尔研究的无限集合引发的。危机产生后,包括罗素本人在内的众多数学家投入到解决危机的工作中去。 1908 年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称 ZF 公理系统,使原本直观的集合概念建立在严格的公理基础之上,从而避免了罗素悖论的产生,在表层上解决了第三次数学危机。 柳暗花明又一村:无穷小重返数学舞台 17 世纪下半叶,牛顿、莱布尼兹创立的微积分学,用了无穷小量的概念,但因对其解释含糊不清,出现了贝克莱悖论,导致数学史上的 “ 第二次数学危机 ” , 19 世纪,柯西、维尔斯特拉期等人引入极限论、实数论,使微积分理论严格化,从而避免了贝克莱悖论,圆满解决了第二次数学危机。然而与此同时,极限方法代替了无限小量方法。无穷小量作为 “ 消失了量的幽魂 ” 被排斥在数学殿堂之外了。 1960 年,美国数理逻辑学家 A 鲁滨逊指出:现代数理逻辑的概念和方法为 “ 无限小 ” 、 “ 无限大 ” 作为 “ 数 ” 进入微积分提供了合适的框架,无穷小量堂而皇之地重返数坛,成为逻辑上站得住脚的数学中的一员,被认为是 “ 复活了的无穷小 ” 。这样微积分创立 300 年后,第一个严格的无穷小理论才发展起来。回顾微积分学发展的历史,无穷小分析法 ―― 极限方法 ―― 无穷小分析法,否定之否定,微积分学基础获得了进一步发展。 实无限、潜无限 认真考察无穷在数学中的发展历程,可以注意到在数学无穷思想中一直存在着两种观念:实无限思想与潜无限思想。所谓潜无限思想是指: “ 把无限看作永远在延伸着的,一种变化着成长着被不断产生出来的东西来解释。它永远处在构造中,永远完成不了,是潜在的,而不是实在。把无限看作为永远在延伸着的(即不断在创造着的永远完成不了的)过程。所谓实无限思想是指:把无限的整体本身作为一个现成的单位,是已经构造完成了的东西,换言之,即是把无限对象看成为可以自我完成的过程或无穷整体。数学中无限的历史实际上是两者在数学中合理性的历史。 亚里士多德只承认潜无限,使其在古希腊数学中占统治地位。文艺复兴时期后,实无限在数学中统治了三个世纪。 17 世纪下半叶,牛顿、莱布尼兹创立的微积分学也是以实无限小为基础的,在其理论中,无穷小量被看作一个实体 , 一个对象,正因此,早期微积分又被称之为 “ 无穷小分析 ” 。这种以实无限思想为据的理论在其产生后的一个世纪被广大数学家所使用,因而使这段时期成为实无限黄金时期。微积分被形容为一支关于 “ 无穷的交响乐 ” 。但由于当时人们对无穷小量概念认识模糊,导致产生了贝克莱悖论及一系列荒谬结果。在高斯时代,实无限已开始被抛弃了,尤其到了十八世纪末至十九世纪约百年时间中,随着重建微积分基础工作的完成,无穷小量被拒之于数学大厦之外,无穷小被看作实体的观念在数学分析中亦被驱除了,而代之以 “ 无穷是一个逼近的目标,可逐步逼近却永远达不到 ” 的潜无限观念。这种思想突出表现中现在标准分析中关于极限的定义中,并由此建立起了具有相当牢固基础的微积分理论,使得潜无限思想在这段时期深入人心。然而,到本世纪六十年代, A 鲁滨逊创立的非标准分析,使无穷小量再现光辉,荣归故里,重新堂而皇之的登进数学的殿堂,而可与柯西的极限分庭抗衡了。尤其,在康托尔的无穷集合论中,体现的也是 “ 无穷集合是一个现实的、完成的 “ 存在着的整体 ” 的实无限思想,这就足以使得实无限思想可与潜无限思想形成 “ 双峰对峙 ”“ 炮马争雄 ” 的局面了。 那么,无穷到底是实无限,抑或是潜无限呢? 两种无穷思想在数学上经历过 “ 江山代有才人出,各领风骚数百年 ” 的此消彼长与往复更迭后,已在现代数学中日趋合流,实际上现在数学中早已是既离不开实无限思想也离不开潜无限思想了。标准分析与非标准分析的使用表明:用两种不同的无穷思想为据,采取不同的方式却可以得出完全相同的结果。这殊路同归的结局,意味着两种无穷思想可以避开 “ 两虎相争,必有一伤 ” 而走向 “ 平分秋色,辉映成趣 ” 了。 当我们上升到哲学高度时,可能会获得对两者关系的更清楚认识。 辩证法告诉我们,要从整体,从两方面看问题。如同我们所熟悉的 “ 金银盾 ” 的故事那样,看到金一面的说是金盾,见到银一面的说是银盾,而实际上对盾的认识应是 “ 一面是金,一面是银 ” ,数学家们对无穷的认识亦相仿。看到无穷实在性一方面的说无穷是实无穷,见到无穷潜在性一面说无穷是潜无限,但对无穷的认识只能是 “ 无穷既是实无限,又是潜无限 ” ,无穷本身就是一个矛盾体,它既是一个需无限趋近的过程,又是一个实体,一个可研究的对象。在这一矛盾体中,矛盾的一方是实无限,另一方是潜无限而无穷正是这矛盾双方的对立统一。事物并非只是 “ 非此即彼 ” 而是可以 “ 亦此亦彼 ” 的。潜无限作为矛盾体的一面,是对有穷的直接否定,而实无限作为矛盾体的另一面则是对潜无限的否定,是否定之否定。诚如徐利亚教授提出的无穷双相性理论:实无限、潜无限只是一枚硬币的两面罢了。 ―― 这倒并非是哲学的玄奥思辩,而是辩证法为我们上的生动一课。 结语 “ 数学是研究无穷的学科。 ” 数学与无穷确实有着不解之缘。认识论说,人的认识总是由具体到抽象,而这一认识过程从一定角度看也可以说是由有限到无限的迈进,而数学是最具抽象性的学科,这亦足以说明在向无限的迈进中,数学达到的层次是最深入的。并且在数学中,无穷是永远无法回避的。因为数学证明就是用有限的步骤解决涉及无穷的问题。数学与无穷间的关系是剪不断、理还乱的。从数学产生之日起,无穷就如影如随,伴着数学的发展齐步前进。尤其当微积分产生后,数学与无穷的联系就更紧密了。恩格斯说: “ 莱布尼兹是研究无限的数学的创始人。 ” 诚如恩格斯所言,从唯物辩证法角度来看,数学的发展从初等数学到高等数学的质的飞跃,就是数学上从研究有限到研究无限的质的飞跃。微分和积分实质上都是一种极限,而极限过程就是无限过程。因此可以说,微积分在数学树立了一座认识无穷的不朽丰碑,另外康托尔的无穷集合论也使人们对无穷的认识上升到一个新层次。 然而 “ 无穷既是人类最伟大的朋友,也是人类心灵宁静的最大敌人。 ” (希尔伯特语)因为征服无穷的路毕竟是这样地难行。在数学无穷发展历程中,我们已经看到征服无穷的路途中,悖论是一次次出现:芝诺悖论、贝克莱悖论、罗素悖论的出现即为例证。虽说,历经几百年,数代数学家的艰苦努力,建立的极限论、实数论、 ZF 公理系统解决了这些悖论及由此导致的危机。然而悖论的的清除,矛盾的回避也导致了数学确定性的一步步丧失。第三次数学危机只是于表面上解决了,实质上更深刻地以其它形式延续着。希尔伯特曾企图用形式主义 “ 一劳永逸地消除任何对数学基础可靠性的怀疑。 ” 然而其一揽子解决方案在 1930 年哥德尔发现不完备定理后宣告付之东流了。哥德尔的工作使人们对无穷的认识又上升了一个层次。人们开始更深刻地明白:任何想一劳永逸解决无穷问题的努力是乌托邦式工作不可能成功。认识无穷、征服无穷之途是漫漫无际的。然而数学中没有不可知!经过一代代人的努力,人们对无穷的认识必将一次次上升到新的高度!
550 次阅读|0 个评论
分享 建模奥秘!!!
书呆子 2011-8-31 13:30
成为一个数学建模“高手”的八大奥秘 马壮 世界上并没有成为“高手”的捷径,但一些基本原则是可以遵循的。 1、扎实的基础 这里所谓的基础并不是单独指的数学的基础,而是指的一些基础的知识也许就是一些常识,包括数学、物理、化学、生物、地理等方面。当然这些知识并不一定都是课堂上学到的,有些来自于生活。建模也许人人都会,但是不是人人都能建立出优秀的模型,当你发现你对一些现实生活中的小问题都没有思路的时候,不是你没有数学的天赋,而是你缺少对于生活中知识的积累。不要一开始就去问学微积分有什么用, 你要做的就是先把它学了,就算是记下来了也行,这样你就不会在遇到类似“用最少的钱办最多的事”这样最常见的问题时感到无从下手。因此我们要做的就是尽可能多的涉猎知识,不要仅仅拘泥于自己的专业。 2、丰富的想像力   不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。不要一拿到问题就首先将问题分类,好多人愿意一上来就先将问题分类,例如分为优化问题,组合问题,方程问题等等。然后用与该分类相关的一些方法去解决问题。现实的问题很多都是非常复杂的,单纯的分类有时候是没有任何意义的。这样做不但局限了你的思想,而且会使你变得更加固执。丰富的想像力会把你和问题拉得更近,开阔的思维可以让你看到问题的各个方面。当然丰富的想像力是建立在丰富的知识基础之上的。 3、最简单的是最好的   这也许是所有科学都遵循的一条准则,复杂的质能转换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。当然即使要应用复杂的方案,也要采用循序渐进的思想,逐步地改进前一个方案,不要一开始就尝试非常复杂的方案。 4、不钻牛角尖   当你遇到障碍的时候,不妨暂时远离问题,看看窗外的风景,听听轻音乐,和朋友聊聊天,或者可以看几本小说。当我遇到难题的时候我通常会去找朋友聊天,朋友的一些善意的小建议甚至是鼓励都会使我的大脑得到充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解了。 5、对答案的渴求   人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。 6、多与别人交流   三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。当然不要把和别人交流的目的就看作是去获取问题的答案,即使是学习方法的交流对你来说都是有益的。 7、良好的编程素养   随着科学的不断进步,越来越多的学科已经和计算机密不可分了,作为解决现实问题的主要手段之一的数学建模当然是离不开计算机了。有的人可能会认为搞数学建模的只要可以编写一些简单的程序就可以了,我对这一点持否定态度。对于编程来说,不管程序量的大小都是一个工程,既然是工程就要按照质量标准来做,不是有ISO9000质量标准吗?那个标准对于编程同样适用。只有编程的质量得到了保证,计算机这个工具才能真正成为建模的有利武器。 8、韧性和毅力   这也许是“高手”和一般人最大的区别。高手们并不是天才,他们是在无数个日日夜夜中磨炼出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,坚持每天去图书馆看1个小时的和数学建模相关的书或资料,坚持半年,如果能够不间断地完成这一工作,你就可以满足这一条。
518 次阅读|0 个评论
分享 数学建模“高手”的八大奥秘
liubao20100816 2011-5-22 15:33
世界上并没有成为“高手”的捷径,但一些基本原则是可以遵循的。 1、扎实的基础 这里所谓的基础并不是单独指的数学的基础,而是指的一些基础的知识也许就是一些常识,包括数学、物理、化学、生物、地理等方面。当然这些知识并不一定都是课堂上学到的,有些来自于生活。建模也许人人都会,但是不是人人都能建立出优秀的模型,当你发现你对一些现实生活中的小问题都没有思路的时候,不是你没有数学的天赋,而是你缺少对于生活中知识的积累。不要一开始就去问学微积分有什么用, 你要做的就是先把它学了,就算是记下来了也行,这样你就不会在遇到类似“用最少的钱办最多的事”这样最常见的问题时感到无从下手。因此我们要做的就是尽可能多的涉猎知识,不要仅仅拘泥于自己的专业。 2、丰富的想像力   不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。不要一拿到问题就首先将问题分类,好多人愿意一上来就先将问题分类,例如分为优化问题,组合问题,方程问题等等。然后用与该分类相关的一些方法去解决问题。现实的问题很多都是非常复杂的,单纯的分类有时候是没有任何意义的。这样做不但局限了你的思想,而且会使你变得更加固执。丰富的想像力会把你和问题拉得更近,开阔的思维可以让你看到问题的各个方面。当然丰富的想像力是建立在丰富的知识基础之上的。 3、最简单的是最好的   这也许是所有科学都遵循的一条准则,复杂的质能转换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。当然即使要应用复杂的方案,也要采用循序渐进的思想,逐步地改进前一个方案,不要一开始就尝试非常复杂的方案。 4、不钻牛角尖   当你遇到障碍的时候,不妨暂时远离问题,看看窗外的风景,听听轻音乐,和朋友聊聊天,或者可以看几本小说。当我遇到难题的时候我通常会去找朋友聊天,朋友的一些善意的小建议甚至是鼓励都会使我的大脑得到充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解了。 5、对答案的渴求   人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。 6、多与别人交流   三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。当然不要把和别人交流的目的就看作是去获取问题的答案,即使是学习方法的交流对你来说都是有益的。 7、良好的编程素养   随着科学的不断进步,越来越多的学科已经和计算机密不可分了,作为解决现实问题的主要手段之一的数学建模当然是离不开计算机了。有的人可能会认为搞数学建模的只要可以编写一些简单的程序就可以了,我对这一点持否定态度。对于编程来说,不管程序量的大小都是一个工程,既然是工程就要按照质量标准来做,不是有ISO9000质量标准吗?那个标准对于编程同样适用。只有编程的质量得到了保证,计算机这个工具才能真正成为建模的有利武器。 8、韧性和毅力   这也许是“高手”和一般人最大的区别。高手们并不是天才,他们是在无数个日日夜夜中磨炼出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,坚持每天去图书馆看1个小时的和数学建模相关的书或资料,坚持半年,如果能够不间断地完成这一工作,你就可以满足这一条。
0 个评论
qq
收缩
  • 电话咨询

  • 04714969085

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-9-17 08:39 , Processed in 0.424998 second(s), 26 queries .

回顶部