- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
|---|
签到天数: 15 天 [LV.4]偶尔看看III
|
本帖最后由 lilianjie 于 2012-1-3 12:07 编辑 , X* H" I, G5 h- T: @! [- _9 U
. b# _+ a4 Y: _/ d2 ^+ f) A! C; j/ Hheyting algebra 海廷代数
4 y* y2 \( A8 l8 z1 a4 d! B2 R) B, l; O+ O; s
Virasoro 代数
]0 k8 v7 s/ R7 Y! ?8 i
* a% P' e* L8 B4 M c
6 o# X# y' h4 f; J3 Bcoalgebras or cogebras 余代数
& k! R- K+ k) w4 m/ t. i+ f余代数是带单位元的结合代数的对偶结构,后者的公理由一系列交换图给出,将这些图中的箭头反转,便得到余代数的公理。3 m$ K2 B( d: X J+ E$ U7 w
' c( E4 E2 D2 J( _
余代数的概念可用于李群及群概形等领域中。
1 `4 n4 ^) d6 z2 A4 ?
+ `$ a5 J2 r# I% Z
" |+ }1 \* G2 m& m9 v" F5 t# E/ [李余代数0 o+ }# M4 O9 B. b' g
) r- J: j# G8 y8 X, s
一张学格的表:( R- \, \) i& e. ^8 k) { G
$ w. ~$ `$ A! y. x( Z( Q) l! j9 \1. A boolean algebra is a complemented distributive lattice. (def)布尔代数是完全分配格
# y2 O4 _6 R; U4 U1 @1 y! }" f! B5 \- S
2. A boolean algebra is a heyting algebra.[1]布尔代数是一个海廷代数
! t5 q: [5 ~9 E, b
( d; q7 d. P1 s5 x; r- I8 P" E( S$ F4 k, @ E
3. A boolean algebra is orthocomplemented.[2]布尔代数是正交可补 Z& g2 G* L x; D/ {0 m* y
3 H! C I/ R- X. m8 o
4. A distributive orthocomplemented lattice is orthomodular.[3]分配正交可补格是正交模
+ h5 k* s- h! \( i: ^& O8 o5 g# C0 K0 ]$ u0 B
5. A boolean algebra is orthomodular. (1,3,4)布尔代数是正交模% `! A% z' O8 c: E \
& X B5 l; U$ w. E- w" t0 p. u) C
5 X3 i' s4 Y. K- l
6. An orthomodular lattice is orthocomplemented. (def)正交模格正交可补
( X% E( I$ a( m- R. v% v5 T, T6 `' h
7. An orthocomplemented lattice is complemented. (def)正交可补格可补
' ~ h5 n$ j9 E. A @
% k4 G/ P* m, p, e' u k+ v% G8. A complemented lattice is bounded. (def)可补格有界
! U4 z/ A" l; k. N+ Z, \- X" c
% Q3 i. N `8 Q6 I9. An algebraic lattice is complete. (def)代数格是完全的( k$ k7 f8 N/ y: ~/ e$ g/ w; G/ C
5 a% [. _+ t ~! R
10. A complete lattice is bounded.完全格有界3 N: J7 [% A4 d( n, t
, u! R' j, h6 [# s0 O) Z/ B
11. A heyting algebra is bounded. (def)海廷代数有界
" g) ?! N) E3 J; [' X9 h( Q0 A3 B
1 \' D W! J/ }5 |' D7 \1 i) z# D12. A bounded lattice is a lattice. (def)有界格是格: W+ W7 d& k* M& d& \' i
$ X% E. C1 b, y
13. A heyting algebra is residuated.海廷代数是剩余的
( j; Q5 i! i/ ]
, U* o9 x% C7 v5 Y/ h5 F" J14. A residuated lattice is a lattice. (def)剩余格是格1 \4 S; V4 u5 y% W4 R# P: q; T
3 \5 j1 L- b# G w3 f2 S15. A distributive lattice is modular.[4]分配格是模
2 b2 E) ]5 _6 X' l' ~; _& P8 k) T5 r* l. b7 S; ]7 E
16. A modular complemented lattice is relatively complemented.[5]模可补格相关可补
* m% @# b, B2 _2 [, n2 G B% s& y, O' u
17. A boolean algebra is relatively complemented. (1,15,16)布尔代数相关可补
7 ]* H* b7 Y7 N7 K5 E0 p* ^( Q* q- u9 C: }; ?2 m- _ ^# V/ z% }
18. A relatively complemented lattice is a lattice. (def)相关可补格是格- D* i1 O% j+ \( S2 `, a; T) w Z
4 c* S2 s2 J8 ~" z+ @9 {8 b19. A heyting algebra is distributive.[6]海廷代数可分配! @9 ?2 c) }! H( ?' F9 j( z! y4 c8 f
( F4 w* X3 L" x: G3 n20. A totally ordered set is a distributive lattice.全序集是分配格
+ m6 N0 p K0 }7 G- e% m$ k/ ~& W, k$ N8 {+ n
21. A metric lattice is modular.[7]度量格是模
. p- E6 d7 W- B2 S' b# Q/ G! Y4 a) t5 k, I8 F+ ?, j
22. A modular lattice is semi-modular.[8]模格是半模
# e9 o2 C T3 d$ Q9 ?& H, X. o
% G0 b' V: B7 [5 M- v, a23. A projective lattice is modular.[9]防射格是模/ D, d* C9 ~' U6 b
& \: T+ ?+ G* {4 N9 n. ]! b
24. A projective lattice is geometric. (def)防射格可几何度量
( t; u: v; B7 E+ j0 a& x
% w# d+ ^9 p0 _' U" j4 G# v25. A geometric lattice is semi-modular.[10]几何度量格是半模, P$ P: Q3 y; B P- P( D
7 d2 \9 i. c, n% f7 }26. A semi-modular lattice is atomic.[11]半模格是原子格2 k$ D! p! Q4 C, |+ n9 s; G% r, w
+ P* m4 j, m' Q4 p+ A* ?
27. An atomic lattice is a lattice. (def)原子格是格, w( y+ D, f1 i! u$ u
5 o3 |, F. H5 C% a+ L28. A lattice is a semi-lattice. (def)格是半格
$ u0 D) v) e f5 w5 V; R1 g. l5 x l/ H( t1 F. L
29. A semi-lattice is a partially ordered set. (def)半格是偏序集9 _1 g* J3 a9 C! P4 h
b/ A' e& F& p
|
|