- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
本帖最后由 lilianjie 于 2012-1-3 12:07 编辑 Y( K# O: [8 d' d5 c' S
% d/ l( j: F- g6 q" T% |
heyting algebra 海廷代数
4 I% w: [1 ]7 R+ g& N. u0 n+ p+ X( n6 s, ]& H7 `& n
Virasoro 代数
$ j" {% N+ N* G- p7 [2 x
: [( p0 B& {7 F; w) F
1 ]8 I& r7 ]5 K \coalgebras or cogebras 余代数 6 _$ x, {0 p3 p! a
余代数是带单位元的结合代数的对偶结构,后者的公理由一系列交换图给出,将这些图中的箭头反转,便得到余代数的公理。- T, l* r& m$ r! m7 n9 G' E3 @0 m
; E9 s0 P* O0 N: j4 R) U, {/ U
余代数的概念可用于李群及群概形等领域中。1 v% d1 l# A# H" T% O1 C
! `- F; u2 Q0 Y3 o8 N8 ?
/ H8 S7 y' ?. b. O k; ]
李余代数- l' r. k8 I3 c. F5 z
0 l. x7 d0 q7 N6 }
一张学格的表:
! P' A7 N8 {0 B2 g- u8 |! X
+ b0 D: u) b& d) P1. A boolean algebra is a complemented distributive lattice. (def)布尔代数是完全分配格
9 X* I8 d+ w0 k3 S+ o6 ~3 F% ?5 c2 {: U
2. A boolean algebra is a heyting algebra.[1]布尔代数是一个海廷代数
- X* }8 q# s! D/ o9 ^8 L6 B' E, g" v5 t" [. P( c- I. H
) y m2 x: l/ y; c( R7 S3. A boolean algebra is orthocomplemented.[2]布尔代数是正交可补, K. N- R$ ~% p" [; y( b- D5 ?$ u
; g0 O" K4 _6 l) b9 B; ?2 l4. A distributive orthocomplemented lattice is orthomodular.[3]分配正交可补格是正交模
2 `% G: v$ j C) `; |" ^
6 _7 { h, j" u! b. Z% a5. A boolean algebra is orthomodular. (1,3,4)布尔代数是正交模
: }4 C r- R# _( F; _0 I7 V. }" e3 Z: j( E/ E4 i
9 i$ i9 c& l. t& r' D6 X& T6. An orthomodular lattice is orthocomplemented. (def)正交模格正交可补: G! e, x/ ]4 U1 a1 r
5 u9 m1 _/ Z2 `$ o7. An orthocomplemented lattice is complemented. (def)正交可补格可补
1 f3 c, _" v$ p' B
4 K, k4 Z* t0 M! n8 M0 I: N8. A complemented lattice is bounded. (def)可补格有界
/ W6 S3 e& H( G' ~& l) r% x
8 u3 {! q7 i$ n6 G9 B v3 [9. An algebraic lattice is complete. (def)代数格是完全的2 a. N {! q/ d
) k4 P' C6 o/ K5 w0 A/ `: j
10. A complete lattice is bounded.完全格有界
5 {) w& M$ K+ b% Q6 s% r7 T3 k! l, ~0 ]7 t
11. A heyting algebra is bounded. (def)海廷代数有界
( g) \6 e5 J! S6 C, x; U* c" N {& G! i2 T2 N- g5 X3 l! q: @
12. A bounded lattice is a lattice. (def)有界格是格- Y1 K0 J: @+ g
% u. z: O! l; s; A8 g$ U+ z1 R13. A heyting algebra is residuated.海廷代数是剩余的
3 w# k; R+ j! ^0 @5 w
3 G a8 F/ d% `5 N14. A residuated lattice is a lattice. (def)剩余格是格( n3 D! e& _; C
$ w: |1 S/ o, w- G
15. A distributive lattice is modular.[4]分配格是模
* f0 h' @! @2 k" A2 R( L6 s, H8 q; D1 t$ D. j! H! n
16. A modular complemented lattice is relatively complemented.[5]模可补格相关可补1 Q5 K. ?, J8 x r; q6 ~3 X9 o4 ^; p
/ r" Y; J5 S" @
17. A boolean algebra is relatively complemented. (1,15,16)布尔代数相关可补
7 b) t. B% h6 Q ?& U
7 H& m5 H" L& Q* h* T18. A relatively complemented lattice is a lattice. (def)相关可补格是格
$ C4 J/ Z! k$ c) {* D- e
& S3 p. P8 v5 X19. A heyting algebra is distributive.[6]海廷代数可分配
6 X( u2 P2 `* m6 O @- f8 ^
# z0 e4 u0 A5 b" w$ s20. A totally ordered set is a distributive lattice.全序集是分配格* X% Y9 q, M! Z' M
/ _/ \" }+ f5 ]% B4 v0 E
21. A metric lattice is modular.[7]度量格是模" W! X% O2 F+ e& |3 m) l4 G% t
: o; T: H, u2 c% t' @3 ^( z- [22. A modular lattice is semi-modular.[8]模格是半模
+ d6 D6 [) K! J. R% O
+ L7 D& D5 n6 n: M' M7 u23. A projective lattice is modular.[9]防射格是模
) a$ G/ n* \- W" y: q
1 S9 n9 i$ q. n$ g. B24. A projective lattice is geometric. (def)防射格可几何度量
' c- @% H: `0 G% a) |
( J* T* C+ v; \: k, r( a25. A geometric lattice is semi-modular.[10]几何度量格是半模5 B& c$ j/ i- c% l- U
3 u) q3 j- Q5 t: E1 |26. A semi-modular lattice is atomic.[11]半模格是原子格
+ w2 w& F8 g# a: h1 b8 [( t) h7 A! N" D- B+ d: Z$ I4 D: h) w5 z
27. An atomic lattice is a lattice. (def)原子格是格; W/ v$ K8 T o9 ^ e
3 X7 a$ U8 g9 G" U7 c4 @28. A lattice is a semi-lattice. (def)格是半格2 x8 l; G; _' {( _
$ c+ J5 C' [' h6 }: e/ o, r
29. A semi-lattice is a partially ordered set. (def)半格是偏序集
5 g! l* o$ L5 u& m8 c
- v& W \9 `7 P9 y# [ |
|