- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
对着S4群表看下面就能懂了,我曾把26字母乘群表带身上2月多
, c- F! c9 I' m7 V
. R( T' }+ u9 x. m7 I# v9 Y4 lS4 := Sym({ "a", "b", "c", "d" });' [8 k+ r- c; E- ^+ y
> S4;
9 j' z0 h; D u' `* S' O. c1 |* MGenerators(S4);& O9 B, U2 g, H+ s
IsAbelian(S4);不是交换群
5 C" P; q4 o* I8 k$ _Subgroups(S4: Al := "All") ;列出所有子群: ?, ~" U- g* i4 m: m2 r
Subgroups(S4: Al := "Maximal") ;列出所有极大子群1 ^3 r2 b8 d$ M' A1 M; {- y4 `
- }' `$ s7 [' A
SubgroupClasses(S4);! a9 g: @/ r+ E9 e7 L
7 E1 e0 n( ?3 [! A$ O8 w$ J
NormalSubgroups(S4);9 a o1 | Y) T6 k- I
AbelianSubgroups(S4) ;
9 u; J1 u$ y" S0 u/ bMaximalSubgroups(S4) ;+ `$ K* F& m, e
6 X# ] G2 ?! D- |; }$ c8 x5 H) }# ISubgroupLattice(S4);成格,你可画下这群包扩子群的图( J2 S6 G& @. I
( X- A. e3 n# N, V6 Z
GSet(S4);" V5 T* {' D- Q
ConjugacyClasses(S4);
& G2 l3 n, @6 D5 `9 qNumberOfClasses(S4) ; 5类
, U3 n. G$ C2 m; @3 o& {7 {0 q7 Y7 F# C& y8 L
Symmetric group S4 acting on a set of cardinality 4- W( \: o3 Y$ x1 n9 f* t
Order = 24 = 2^3 * 34 O- V* q J) p" u7 ~( q
{
- f" P8 C1 |0 J1 v3 ^! n* E (c, b, a, d),
9 m2 y7 z5 t# x' q1 Q4 f (c, b): ^$ v/ q0 V! U6 M. K2 h
} 两生成元
K+ \5 u0 }/ Rfalse+ W$ U2 G. \+ g9 [
Conjugacy classes of subgroups 子群共扼类5 e5 D }0 F x* v2 Y/ `2 W) T
------------------------------
9 m( N/ F0 R( M- @4 Z3 |$ c1 B" {9 q6 w4 ]0 n! K) c
[ 1] Order 1 Length 1$ U4 y) G6 ?7 n& j5 ^. v' t
Permutation group acting on a set of cardinality 4: N4 h/ o2 t6 B1 x
Order = 1
/ t* y# ?5 r9 R& L[ 2] Order 2 Length 3
* P/ b- o, ^5 K; y9 P% j* S Permutation group acting on a set of cardinality 4
; ^! u8 I2 O/ { Order = 26 W/ G: @- k5 ?# F7 y1 `3 _; `) j9 D" i6 r
(c, d)(b, a)( ]. W6 _7 M; y/ ]: c. V% h
[ 3] Order 2 Length 68 d8 G8 h% G: ]# U. k
Permutation group acting on a set of cardinality 4" ?! l) N% i! W P" {
Order = 2
8 D$ A; J4 b$ Z0 ] (a, d)) P* V" Q5 G8 q( ~8 U; p
[ 4] Order 3 Length 4
: r4 |( R* V j' ?3 r8 K Permutation group acting on a set of cardinality 4
- k% _4 R( T3 x$ k3 ]) K- \+ J! U4 \+ X Order = 3
! j8 B! t/ H2 b9 m/ A1 @ (b, a, d)
9 C, m, y0 n. X5 K' g0 Q[ 5] Order 4 Length 1% `. l! b6 ]- p; }9 E
Permutation group acting on a set of cardinality 48 r! _/ s7 m7 L8 \( x' b
Order = 4 = 2^2( P( Z' L5 j4 R- j% U
(c, d)(b, a)2 D/ g% v0 ?! y& {0 I% G
(c, a)(b, d)9 l. j, T! [' n' i9 T
[ 6] Order 4 Length 3
* h+ v% T3 X) f$ e Permutation group acting on a set of cardinality 4
6 J" p3 q% L7 g y8 m Order = 4 = 2^2
8 d9 l" z: l% \0 {) W6 R (c, d, b, a)
+ N0 R3 T2 e2 N! J/ [+ g: B (c, b)(a, d)
) e* x: u, e- K6 d$ g) i% e[ 7] Order 4 Length 3
& \$ Y. ^" {! }% P/ | Permutation group acting on a set of cardinality 47 N' |, V/ w- x4 e" M5 n( b
Order = 4 = 2^2" z0 U j4 u* i4 t
(a, d)
! u7 y) |& K2 T$ E* L9 r3 o (c, b)(a, d)
9 V. M9 F# V0 r# V. z; W[ 8] Order 6 Length 4 X2 ^: e$ u; }$ q8 V# t
Permutation group acting on a set of cardinality 4; ?+ Y( }, m4 w* Q& B1 E5 f
Order = 6 = 2 * 3
7 q/ t0 _( ~ L (a, d)
7 o0 p3 R0 T4 l! m4 o6 h (b, a, d)/ s6 \0 X% f i, [- y
[ 9] Order 8 Length 3: W6 S5 }3 Q* |/ P
Permutation group acting on a set of cardinality 44 x9 m3 Q( W* b
Order = 8 = 2^3
1 l) K; g- {/ P2 y (a, d): S% ?0 k' v. B$ R
(c, d)(b, a)$ }6 d7 w1 o- H( l, y
(c, a)(b, d)+ n1 f Z3 [- }( \+ y _% `, }( [% d
[10] Order 12 Length 13 [) e6 j9 _; g+ e
Permutation group acting on a set of cardinality 47 g; [+ V1 s$ p3 J/ e m2 v- A
Order = 12 = 2^2 * 3
7 C/ i( A+ g2 ]/ [+ m/ J! h/ I (b, a, d) I+ Q1 o3 W. I/ o: \
(c, d)(b, a) M) Z `- p% f; ]4 |) I
(c, a)(b, d): b# h: ^' E5 b! P5 u: j6 V
[11] Order 24 Length 1- s t& ^; V0 J' a5 D0 S
Permutation group acting on a set of cardinality 4
( q# m/ u' u5 e* _$ z# Y Order = 24 = 2^3 * 3
2 u6 w6 t! D# p- c& A0 U5 s (a, d)( `$ D! J" f, J& S& P
(b, a, d)6 K0 s0 ^; r% n$ `, \
(c, d)(b, a) L, [ O4 g. | L% t! R T! e
(c, a)(b, d)
, ]7 S1 m1 A5 \3 m- P8 ~Conjugacy classes of subgroups% a; T- W/ B! q( k/ t$ t1 M
------------------------------+ C& A9 `0 n5 Q
: U" d. n2 i& {- K# X! R! B[1] Order 6 Length 4
+ Z& G, b$ d4 \: t8 b9 o8 R Permutation group acting on a set of cardinality 4 R" s% J, q* H2 |6 o2 W
Order = 6 = 2 * 3
W0 O3 N, X7 l* O' w (a, d) a) f' h) P6 e$ u
(b, a, d)
) l# B8 B) \0 |$ R+ E9 `[2] Order 8 Length 3. G% l5 X5 s& f5 A7 C+ A& Y
Permutation group acting on a set of cardinality 4
" g. h! N' ^9 K1 n2 _ Order = 8 = 2^3
" x$ K: }5 o7 Q* I3 H (a, d)
1 B5 f9 W) b# _0 U4 X/ ^/ Y (c, d)(b, a)
! g5 } ^( J3 l, A+ V; t1 ^ (c, a)(b, d)
+ Q. n; @0 a8 e2 }[3] Order 12 Length 1! H5 L- f; E. V# L1 h
Permutation group acting on a set of cardinality 4& x+ E$ X' W/ |2 a
Order = 12 = 2^2 * 3* e" x- ~7 Q. N
(b, a, d)
- r( w5 R' c. S( L" m: T (c, d)(b, a)% ^. X# {& F6 l# J
(c, a)(b, d)
+ O( a. U" W4 w. J1 rConjugacy classes of subgroups( Z9 o+ C M) A% ]# D( |$ v
------------------------------
1 a1 y" b, i3 e4 [+ X0 u+ L$ {& F- W! f9 p$ w
[ 1] Order 1 Length 1# s4 b0 Q0 B. e* p: Z+ `
Permutation group acting on a set of cardinality 4
( d5 G* ?4 [% ^4 m O; G$ d& d$ O0 e Order = 1
. w' p' w1 H- R$ l9 t' h[ 2] Order 2 Length 3+ k) N( \ V F$ {% k/ c
Permutation group acting on a set of cardinality 4
+ J3 ^% H2 e& o. `; N Order = 28 C3 \- f: I/ d4 }! C( `
(c, d)(b, a)
. z- z% d3 u8 r* s- E[ 3] Order 2 Length 6
# s8 x, F# ^. p+ X9 ?9 l Permutation group acting on a set of cardinality 4
7 p3 V+ ]9 R: C Order = 2
$ d6 J/ x' \' m% i& V5 V% [ (a, d)
4 y3 l! X) e7 l6 v, I8 h+ o5 d[ 4] Order 3 Length 4
+ |. ]% c5 F2 | a Permutation group acting on a set of cardinality 4& `" b( ^3 G, o' d+ n
Order = 3& Y+ o& Q$ k; r9 Z( [
(b, a, d)" a9 i8 H! _3 Z
[ 5] Order 4 Length 1
: l6 l9 S- ^8 i$ z- l" X0 b Permutation group acting on a set of cardinality 4
% N: `8 z; E$ o9 z( U* M Order = 4 = 2^2* E( O k+ u: v: F o8 I
(c, d)(b, a)' F* ~% H$ j6 Z
(c, a)(b, d): W7 V) U8 t, w" A6 M. J6 Z
[ 6] Order 4 Length 3
' v9 y0 i9 ]6 B7 X9 ^ Permutation group acting on a set of cardinality 4
2 {1 i- D4 c% _1 m8 y* t Order = 4 = 2^2" M# R( F- ^3 F
(c, d, b, a)* @3 z g2 {. T
(c, b)(a, d)! z. U) X# I% j# ?( M
[ 7] Order 4 Length 3
- n, \3 e1 a0 \ Permutation group acting on a set of cardinality 4
. o. B) p6 ^, k8 [+ D. n Order = 4 = 2^2. k- w9 ^6 E( u4 b8 L- v. k- l2 C
(a, d)
, U5 H% k; Y& Z. g- v, M X" r* P (c, b)(a, d)
4 n( P% r9 S4 Y+ o2 A3 X% S[ 8] Order 6 Length 4
5 |: u5 n9 w! v4 U+ }, k) g Permutation group acting on a set of cardinality 4
# ~) p! {; |- q# r Order = 6 = 2 * 3$ z( S& S" G0 i2 p* T4 T( [
(a, d)* d' o4 c' I/ A# o6 M1 u
(b, a, d)/ R& u$ X5 B- O( c) d/ R
[ 9] Order 8 Length 3# M5 ~! T( ?" _4 \0 a8 N; B
Permutation group acting on a set of cardinality 4% s) S& \2 }) j, o
Order = 8 = 2^3. w6 B- m# j8 z4 v4 z- f: g) m0 D
(a, d)
3 c9 u+ N% F% U! r% r* a( J8 o (c, d)(b, a)
* f9 I" o& K& g) {' F8 B (c, a)(b, d)/ z, Q" i( D9 X" i: ^" c) ^
[10] Order 12 Length 1# L( `% b$ R3 q$ M0 U \
Permutation group acting on a set of cardinality 4
' e$ Q4 W$ ]/ ^& W1 C) \5 ^ Order = 12 = 2^2 * 3
$ g: L, ?* K6 x( I- C (b, a, d)
5 |" H2 [. a$ J (c, d)(b, a)
1 r. H( r) T; X' d7 t1 d h: D (c, a)(b, d)( y5 b9 r: q9 H% n) j4 G4 L
[11] Order 24 Length 1- N, D" K2 E" k" d( Q! T! ~" j6 t
Permutation group acting on a set of cardinality 4
6 p* _# {4 s+ ~- G' U& i' | Order = 24 = 2^3 * 3
! T, h1 G/ p7 I' C5 i3 G (a, d)0 w2 B1 U8 V6 D
(b, a, d)
" Y- A {- ~: I* M& M: { (c, d)(b, a)
+ `/ O1 q" q: `) k (c, a)(b, d)
& @5 ?9 j( B- Y( I C, `Conjugacy classes of subgroups- e3 _6 u `% w) q! ]
------------------------------. t! v7 ?+ {% R. K
5 n- v, t2 u) t: }. n. _4 L' `9 M
[1] Order 1 Length 1
! L$ z* U- e) W @8 l Permutation group acting on a set of cardinality 4
% r# a6 X. Y' h' k, B Order = 1
E: X- ]) \: [( V( V[2] Order 4 Length 1
+ a9 R9 V# T7 |0 m! p Permutation group acting on a set of cardinality 4: [6 G, N1 Y" k- n: Y9 o
Order = 4 = 2^2& ]0 J% j8 P8 I; y2 ]# m9 q( f
(c, d)(b, a)+ F8 \1 y& C1 G) {6 R( O: y
(c, a)(b, d)
+ \/ c5 }- T+ o w[3] Order 12 Length 1" u% F; {. ]% Q+ |
Permutation group acting on a set of cardinality 4
) t# ?% s: F( n0 j6 B" l Order = 12 = 2^2 * 31 X7 R8 C* n$ B* V: b
(b, a, d)0 z$ _% [$ s3 O( J8 }4 `
(c, d)(b, a)
* ^: \8 Y' E R3 o1 B4 B (c, a)(b, d)
2 ~ C# n% X3 [[4] Order 24 Length 1
F- c$ w) y W Permutation group acting on a set of cardinality 4
^: x. X4 g2 f' L3 W" M; ^( a Order = 24 = 2^3 * 34 m9 a( z3 m1 d* Y( n- | G
(a, d)" \, v. }9 D8 Z1 Y) ^& u
(b, a, d)$ u0 i# g/ H. X ?% F/ z: O
(c, d)(b, a)8 p) m7 o* M- m5 N' i
(c, a)(b, d). |2 K) n5 w4 h, x9 \& |
Conjugacy classes of subgroups6 P% K4 D6 D6 L2 w6 Q6 M6 j4 x
------------------------------
8 _9 N W$ r5 J3 G# B9 X, l/ O* @) q% J4 v
[1] Order 1 Length 1* i! i. V! X9 t# |' y
Permutation group acting on a set of cardinality 4
5 n: t9 R8 Y3 E Order = 1: j7 P1 \- N7 o8 N: U/ J% r
[2] Order 2 Length 3
1 t/ a; {( V7 ~$ _7 \ Permutation group acting on a set of cardinality 4
' w" _6 F4 i3 _3 ]- F7 [' Q$ U Order = 2
6 d2 k. I' ~% Z$ h, n a* o (c, d)(b, a)/ A* e2 Q" M' L* b+ d5 o, n& k
[3] Order 2 Length 69 K% r3 |5 o2 r# u+ Z
Permutation group acting on a set of cardinality 4
. N6 x0 T7 {0 G6 _& R9 C( _0 m/ F$ c' K Order = 2 C; r1 m( J, q
(a, d)
, J# c2 ~% C3 W" {4 e: E! v[4] Order 3 Length 4
) t+ I/ c) U, b" h& h: Q Permutation group acting on a set of cardinality 4
0 V# c& c5 s! f! a! l+ W8 X Order = 3: Y1 ^8 W. S: o/ U. y+ H6 {' l* J! Q
(b, a, d)( C. Z0 R! o c R
[5] Order 4 Length 1) n1 y/ N: w+ E- c7 `! { P
Permutation group acting on a set of cardinality 46 f4 E/ B% j4 ?
Order = 4 = 2^2
/ Z* a" C& j, t9 N R0 k0 m (c, d)(b, a)
" }4 X- O/ `2 p (c, a)(b, d)5 J+ S2 \8 ~) }, F
[6] Order 4 Length 37 m" v7 g# f# Z( b- J/ n4 H
Permutation group acting on a set of cardinality 4' v! i) N6 z1 R' P1 Y# Q
Order = 4 = 2^2
, i2 e0 ?( q, E0 M (c, d, b, a)
, }& R" v8 N* V8 j" o4 v (c, b)(a, d)( b& I& L/ d1 O) U4 F1 F0 @
[7] Order 4 Length 3/ d- G7 u% v: S# u7 r1 e k/ \
Permutation group acting on a set of cardinality 4
+ U: T% e$ ?0 A3 g( Y. i Order = 4 = 2^2! o% ~2 l; {( j3 _- n$ F$ c
(a, d) n4 w# e2 Q) Q% T4 t
(c, b)(a, d)& H1 F' N2 p- r! x/ j1 C
Conjugacy classes of subgroups
, _+ q( I) |9 u! t7 T7 i------------------------------
4 g8 a) Z, f, L# H8 S! h5 B8 G' ^) W! g$ U
[1] Order 6 Length 4
: D9 s4 n' R$ ?$ w9 n Permutation group acting on a set of cardinality 4- ~; H$ a) Z5 T* d) |9 D. Q( X
Order = 6 = 2 * 33 n- c8 d* Z+ I9 v. `, O0 ^ C
(a, d)
* z; T. t# R' C# F: Y$ H# Q2 z ` (b, a, d)
3 [3 T# t7 L. H- e[2] Order 8 Length 3
# S7 X2 Q+ H0 F& N1 o+ J Permutation group acting on a set of cardinality 4
8 \( H+ A- R$ G# h& ?; H Order = 8 = 2^3) Z1 R2 {" y7 m* w$ P+ T$ J
(a, d)
: q6 K% \* d. a' G/ a3 }# T (c, d)(b, a)& h/ C L4 G+ t1 L
(c, a)(b, d)
4 I# G1 P* A- {/ F3 O[3] Order 12 Length 1
9 I5 z# W/ |; s6 N! P! {2 H2 z+ x0 Z( N Permutation group acting on a set of cardinality 4) y, t/ F9 X4 E7 W5 E) W3 A- s* l( z
Order = 12 = 2^2 * 3
2 C/ ~! r5 ]( u) V (b, a, d)
% d" W- A) `5 g- R! Z; ?9 r) h (c, d)(b, a)2 E1 j7 O) R. I, z+ B
(c, a)(b, d)7 S5 g, ?7 a" v# ?* q7 z+ L
- s4 v$ w) c G) m3 jPartially ordered set of subgroup classes% m+ m( O: o9 U
-----------------------------------------
0 x3 V6 L6 h- i' Z; W0 n, h( P' ]$ W P2 X3 _6 [( o
[11] Order 24 Length 1 Maximal Subgroups: 8 9 10
! c! i1 N! s7 n; u---
0 I. s, w% k6 h5 ]$ G8 _[10] Order 12 Length 1 Maximal Subgroups: 4 5
0 H: X7 C3 _1 h- @" n[ 9] Order 8 Length 3 Maximal Subgroups: 5 6 7
- H$ \4 Z9 a; O5 W* F( @) \---2 h: |( r: k' j- ?. @, W& m# S1 l
[ 8] Order 6 Length 4 Maximal Subgroups: 3 4
* U4 X" Y, Z& h/ V- j2 q9 P[ 7] Order 4 Length 3 Maximal Subgroups: 2
" A: y+ J7 u! s" Y/ T9 m; U3 j- E[ 6] Order 4 Length 3 Maximal Subgroups: 2 3
0 S/ \ P! e$ H/ }; Y; u. e[ 5] Order 4 Length 1 Maximal Subgroups: 2* ~: `# p# y2 k l% k. y: U x7 O
---. }# V8 U4 W# K( O# Y
[ 4] Order 3 Length 4 Maximal Subgroups: 1
' X, F S) M3 V3 N+ s[ 3] Order 2 Length 6 Maximal Subgroups: 14 |+ ~6 ~, e$ }' c
[ 2] Order 2 Length 3 Maximal Subgroups: 1
, e$ w! n: ^% Q! E) N; W- X& N---+ I1 X- a! e% J2 K4 T
[ 1] Order 1 Length 1 Maximal Subgroups:
' [1 Q8 o8 E% o8 A# Y8 w/ U5 c- {8 z) Y) u9 {8 B
GSet{@ c, b, a, d @}0 ~5 ?/ }0 Y- S
Conjugacy Classes of group S4
+ y2 _* u- [, _8 `- r5 O-----------------------------0 |! k7 M3 x0 O
[1] Order 1 Length 1
: n0 X1 @* i7 W, d: P Rep Id(S4)& g6 A. \5 V3 j
, M) |$ K4 |, W[2] Order 2 Length 3 9 C* ?/ ]4 T7 p" o* T" W
Rep (c, b)(a, d)+ N1 T3 u2 h; ?
- t3 z. v) e% z3 r. E* ~, `[3] Order 2 Length 6 6 X) T% }( g* Y8 }
Rep (c, b)
" v* n L, q- Q8 n- b/ |# j
: B% Y& }2 G; S( {1 g2 T" P0 s5 P[4] Order 3 Length 8
6 T/ V, u3 k' W7 ]+ K, \( c Rep (c, b, a)3 B, P& u# o. M( ?
; j) f3 O7 p- q) Q
[5] Order 4 Length 6
6 j" J3 @. Q0 `, y8 _' Q1 N! |& U- Y Rep (c, b, a, d)
0 a8 V5 f9 a4 ~
* |: N% ~2 Y. `$ `2 j* B4 e2 e! p% ^( m7 {' s( H
5 |
|