QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3360|回复: 4
打印 上一主题 下一主题

311数学结构种Mathematical Structures

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-12 13:19 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    8 [* N. c: T5 `, L! l: b; D& o

    8 w: g, _) }; X" {; z: v0 z% b4 H/ ?- MAbelian groups     Abelian group
    5 r8 T- S  D4 \& N$ @- ^8 Q* WAbelian lattice-ordered groups
    . v0 K9 P& D0 u" y) P  |2 `) c3 g% nAbelian ordered groups- G. w* T' r+ e5 R8 E3 c$ }
    Abelian p-groups
    - z. |) J, ]* T" {. SAbelian partially ordered groups
    ( g9 V8 L3 v& i+ W/ m& |Action algebras     Action algebra5 D, @8 @- C0 ~4 l5 H: d
    Action lattices
    # q" d1 J- e* e4 D+ KAlgebraic lattices+ J: _. H9 N& U* I
    Algebraic posets     Algebraic poset
    # x1 N; z2 @( z/ W: x# NAlgebraic semilattices
    % t% W1 S4 J% [9 M; T! G0 _Allegories     Allegory (category theory)+ f1 A, F( P9 Q; k4 e$ Z. E
    Almost distributive lattices; E, T, p: @1 a* f7 f. C# i
    Associative algebras     Associative algebra( |, s* B4 f# S  H0 z! X
    Banach spaces     Banach space
    / {0 k/ B9 r( FBands     Band (mathematics), Finite bands
    3 ]9 C' r1 E9 Z7 Z2 DBasic logic algebras4 J$ [3 W/ m- B1 y3 h
    BCI-algebras     BCI algebra2 I/ Z( D- l9 h
    BCK-algebras     BCK algebra4 T3 F/ k& i/ w4 B# ^- R0 s
    BCK-join-semilattices
    . @$ [# U- H4 LBCK-lattices7 E5 J0 f. t$ J+ A- @
    BCK-meet-semilattices
    + R' H+ Z( M1 N/ C! WBilinear algebras+ @9 x& p6 R' l: d- [
    BL-algebras, B. y  C* E8 q$ a7 P% ]
    Binars, Finite binars, with identity, with zero, with identity and zero,
    * g$ t( h0 M( E* }5 k+ H. J- `5 L" mBoolean algebras     Boolean algebra (structure)
    9 i: N& C/ {6 ]% v6 b1 M# l: ?' TBoolean algebras with operators
    & }7 i: M0 ~+ _/ k( X* v' hBoolean groups
    ) O' ~7 x* C5 R; x3 y7 w4 ?5 ~Boolean lattices7 j8 o8 s/ p& Y1 M2 h
    Boolean modules over a relation algebra' O% x- Z/ H/ h! ^2 D
    Boolean monoids
    & Z* t. s; n; U/ y; O; |Boolean rings
    # r# F" ?. w! f3 Z0 r5 CBoolean semigroups
    0 G% K, I; T6 _  [) q. vBoolean semilattices
    8 u0 c$ z" _, IBoolean spaces
    6 _/ A( P  ^, Q7 Z8 ^; ^8 T4 \- YBounded distributive lattices) T$ y# d6 J9 j! i+ I4 E
    Bounded lattices
    , S1 c, d/ s1 FBounded residuated lattices
    . \0 ^8 \$ W. B# F5 eBrouwerian algebras4 q6 r1 A( T% q& h$ z4 c% y
    Brouwerian semilattices
    $ g0 _. X2 z+ }& zC*-algebras
    7 J/ U1 N6 y3 l1 M& [8 {6 SCancellative commutative monoids% B* _8 X& I6 q* c3 l, z+ W
    Cancellative commutative semigroups
    ' ]/ Q9 ^* D! D# rCancellative monoids% Q4 K% {* Z0 Q+ ]+ f; ?
    Cancellative semigroups
    0 k- `2 c8 ~5 Q3 |/ w& VCancellative residuated lattices
    , i1 a6 x/ I) ]( t; LCategories' e, o6 b7 t+ O$ g
    Chains
    ; @4 s& Z2 R/ c: zClifford semigroups
    / p; q3 M/ Z& FClifford algebras
    ; J& Z2 V2 w6 N7 \5 rClosure algebras
    : r3 P9 ?$ v9 \+ _( _Commutative BCK-algebras
    . ^) @" }( l# T- n% b6 pCommutative binars, Finite commutative binars, with identity, with zero, with identity and zero 2 Q/ [  s1 t, }$ e; u5 r& K! G
    commutative integral ordered monoids, finite commutative integral ordered monoids
    0 X3 V/ l' f, KCommutative inverse semigroups
    $ P% F* E6 A: c9 r4 `Commutative lattice-ordered monoids1 M- B7 a/ }/ ]4 D! K; M
    Commutative lattice-ordered rings
    . X7 l( c) T, Z( x8 z% u3 WCommutative lattice-ordered semigroups
    1 b: ]& ?- t% Y! G  xCommutative monoids, Finite commutative monoids, Finite commutative monoids with zero
      E9 K# _: v; C/ m( @, GCommutative ordered monoids* X0 J9 ^' |, {/ Q  a- J. i0 s8 K
    Commutative ordered rings7 d$ e1 s5 I4 D0 v  B- j
    Commutative ordered semigroups, Finite commutative ordered semigroups
    / `$ m4 |' S* fCommutative partially ordered monoids
    / J. @3 J  s  X- V' o3 K& wCommutative partially ordered semigroups8 E6 @) ]1 U/ Z5 i. M
    Commutative regular rings8 S6 d$ w+ I+ R, {
    Commutative residuated lattice-ordered semigroups
    6 @6 _2 q! f# [! S$ S% I1 sCommutative residuated lattices
    7 n! @! ], R" A& V& qCommutative residuated partially ordered monoids4 _# N+ J1 `  i7 L! G- ?+ l
    Commutative residuated partially ordered semigroups
    $ a3 I. X$ n0 d" sCommutative rings
    $ ^, H$ M* y! S7 i& @0 tCommutative rings with identity
    9 b' B. f' w; Z' lCommutative semigroups, Finite commutative semigroups, with zero9 V9 f& t: L. x. Y  |9 F
    Compact topological spaces* ^, a4 \4 A# K# R( }' M
    Compact zero-dimensional Hausdorff spaces2 p4 [9 c! p: }. K
    Complemented lattices. b0 t% `/ G( i
    Complemented distributive lattices. h! G# p. p  z5 Y4 ]2 i
    Complemented modular lattices
    ' a; Y7 H- e" N) a8 CComplete distributive lattices, N2 T5 F5 l: q3 [
    Complete lattices
    $ X" ~1 B4 T- s1 M- V, UComplete semilattices# S: S: |2 V4 U; }: f$ n" y
    Complete partial orders
    1 d* Z8 N# v6 ?3 \1 C4 n$ UCompletely regular Hausdorff spaces
    ( N) @$ ?& Z- \1 I& M  }3 ?Completely regular semigroups: r0 Y1 l% V7 l3 s! K& P
    Continuous lattices
    - t1 Y: x$ z& z+ iContinuous posets# O4 O( E( k+ @# w7 _
    Cylindric algebras& S' l% U+ v2 D/ z8 c- L! W$ `
    De Morgan algebras
    6 A; W6 b. o! n9 t, B+ ?& L" V( ]De Morgan monoids5 O# u* v' X0 S( H+ ~- [, X9 d7 }7 J
    Dedekind categories
    1 A9 z* C, a  _" iDedekind domains
      z) S9 T+ L+ ~; S$ }" mDense linear orders
    , R5 f( g' \' e9 ODigraph algebras+ d2 y9 D: _& s$ n2 x2 w* L4 g
    Directed complete partial orders  v- f" j7 z, G/ D( u0 a
    Directed partial orders0 d, p" _# H* y3 b2 K
    Directed graphs
    + _. C* G% d, o% N" e- c5 [Directoids
    ( }& D8 d( ]1 d. {9 x* D& hDistributive allegories0 E2 O* |& [4 O
    Distributive double p-algebras  R; q7 K: Q+ K, w
    Distributive dual p-algebras" o* c, p' G/ n7 F( M
    Distributive lattice expansions: W" C3 B# n6 r1 P5 E& N* L# N
    Distributive lattices8 e# c( n3 {7 T/ U6 t9 C" U; T
    Distributive lattices with operators
    9 |; V4 A8 {& K6 w& k2 DDistributive lattice ordered semigroups
    * K% O; l$ V/ ~) ~Distributive p-algebras7 ?0 B& e* Q: M) @. u
    Distributive residuated lattices
    ! j' w+ X& o. G4 }' |8 }7 i; |Division algebras5 L4 d& H0 ^# l0 x! I
    Division rings
    8 w5 V1 t: v% QDouble Stone algebras  x* r9 W4 p' e. h: V2 v
    Dunn monoids
    ' `) G1 ?0 u# B8 V- H, nDynamic algebras
    7 r. M# l1 K) |4 ?1 K, WEntropic groupoids
    * E3 j8 ~7 t- V" w1 HEquivalence algebras) n  {5 E  Y0 T4 u6 |
    Equivalence relations
    5 V* R& u- j% s; L  _8 M; ?6 _Euclidean domains( s4 p4 }- r! Y  M$ k+ e  h; |/ k
    f-rings  N$ k+ @5 F' H# j7 i8 h# K% O
    Fields
    ' f! t1 _" C- I3 B! W" IFL-algebras
      u" H; L/ x$ FFLc-algebras
    & a* v5 Y  ?' {) W' _' XFLe-algebras
    3 N3 _7 N5 U! F8 S4 i/ ]" Q7 F1 WFLew-algebras/ i) {4 a; O0 P9 `7 \
    FLw-algebras* N3 g* o- D, V8 \" S( T
    Frames7 e) r  \7 Z8 t- z! Y0 K5 H5 V  [
    Function rings2 a  z0 A5 S5 y. K* ~$ W' D& `
    G-sets
    . R( I4 @! w7 j7 V; \0 D0 LGeneralized BL-algebras
    9 K. N3 I0 o8 SGeneralized Boolean algebras
    * X5 u1 f4 `9 u. E8 BGeneralized MV-algebras7 W9 s& L5 Z% q# B" M# H
    Goedel algebras) B! x8 }; Z/ z5 c. |, l3 M
    Graphs, z9 E  q9 V6 @" x% P) g5 x5 I- K
    Groupoids% s7 K) n0 |( b0 M$ n
    Groups
    % o( m. E" _8 n% P' JHausdorff spaces
    0 j- o- i2 A1 b. C; `  e  HHeyting algebras* Q- g5 ?2 W  A- y! E: j
    Hilbert algebras3 R9 s( o  d) `  T7 J
    Hilbert spaces0 Y7 y1 A; d  F  {8 ~
    Hoops/ z7 P  N$ V. t4 D5 U
    Idempotent semirings
    & ^+ j# p! W# c9 \+ IIdempotent semirings with identity, @  d2 z3 s7 Z; j  J0 o0 y3 l
    Idempotent semirings with identity and zero! A# q; O8 T# D# p- e
    Idempotent semirings with zero
    + L- |2 j1 L6 Y% i1 ?, d* M6 iImplication algebras
    4 j# O$ C5 {  f: p$ fImplicative lattices
    * z% U* Y4 u3 c$ H8 P% x8 i- hIntegral domains) Q- f$ }6 u! ~: b( j* @. @
    Integral ordered monoids, finite integral ordered monoids( D& j# n0 j, y/ d
    Integral relation algebras) p/ W/ p* z  A2 f+ v7 [* D9 e1 v
    Integral residuated lattices9 P, Q: C" o# M: Q# n
    Intuitionistic linear logic algebras
    % c8 d# d' E! c% g# |+ h/ ~Inverse semigroups" r) R, d1 _% U( S4 [5 I  _
    Involutive lattices
    ( g0 }+ m; |, n, JInvolutive residuated lattices
    ( R9 m4 M+ h+ E' d7 YJoin-semidistributive lattices) M, b  N9 E; F
    Join-semilattices, ^# I# c& C* Q. _0 c. `0 c5 r* }
    Jordan algebras  t$ x# U% k+ ?- v0 d, P# h
    Kleene algebras& V3 t/ r, I, w! E* z$ \  g
    Kleene lattices6 G9 q- j6 K3 j
    Lambek algebras
    3 x4 o- [) X: {! ULattice-ordered groups
    9 y6 o8 X1 ~; a( f) O. Q( c% GLattice-ordered monoids
    2 n- Y' _) v" Q+ Q8 A$ VLattice-ordered rings
    0 R; X2 U1 m; d( LLattice-ordered semigroups- ^0 R4 d; z/ c1 y9 S8 f2 z
    Lattices' X6 O+ q( u6 s, }0 V+ Y6 u
    Left cancellative semigroups2 x' {/ u$ [" u1 A( e
    Lie algebras
    3 J& w( \+ A' y; z3 {' aLinear Heyting algebras& ]1 F  ?0 ?7 u" P3 Q
    Linear logic algebras
    * s/ j' `% N# M( u; P* B# H) VLinear orders/ J. w- n0 B9 x' k! ~
    Locales9 x7 m' P! y! {
    Locally compact topological spaces
    , z) K" z* |+ I% hLoops7 ?) L, j) H4 R- L( `2 f1 k
    Lukasiewicz algebras of order n
    5 R/ I0 L' s7 t3 `& k' GM-sets/ e, n* n$ l! O! V% O$ t  G0 D
    Medial groupoids( `$ S: V/ c9 c# h3 ]- X4 T
    Medial quasigroups4 z, V" O! f! E" q8 v
    Meet-semidistributive lattices6 C% j9 W, ]# V9 t) j  r
    Meet-semilattices
    " m; S2 U. m  E2 aMetric spaces
    $ R; J. S5 Z2 S; ~3 VModal algebras, a" P; S! T8 ^4 z
    Modular lattices5 N) i7 _, c4 ~9 q3 @3 m3 J
    Modular ortholattices
    / W& p: @* \5 I! P" }+ mModules over a ring
    ) G. S! l' u6 i  Q, f" N4 a. \8 T7 nMonadic algebras8 K; M' \% x' X3 T
    Monoidal t-norm logic algebras  e; f* s1 a  c$ H
    Monoids, Finite monoids, with zero+ i9 b, H1 |7 E" @' c
    Moufang loops$ [; }+ T6 W( k* d+ n$ @5 b
    Moufang quasigroups
    " A( b) N3 o6 W1 J" j9 p& y% BMultiplicative additive linear logic algebras/ A2 z* H0 ?* h3 q) i! N8 Q% D
    Multiplicative lattices6 |6 K8 O- r  U& A  H! F$ F
    Multiplicative semilattices3 }. A/ L8 ]' X- [
    Multisets' L; j& Z9 O1 o5 g- x5 Q
    MV-algebras
    ' @$ S  A8 Z; D7 y* N4 tNeardistributive lattices. W0 y) b6 z4 e; ?1 L7 K
    Near-rings
    7 ~) u1 ?7 L. e, |- P! D2 v+ W5 SNear-rings with identity6 o- I/ X# M$ L' d  l
    Near-fields. ^0 N& S9 @6 G7 T
    Nilpotent groups
    8 P, l6 j2 }, G* K6 T9 s$ O  _Nonassociative relation algebras
    ( {1 K! {/ x5 p+ \3 @Nonassociative algebras$ S% t+ S) ^! v7 j* z' K
    Normal bands
    $ x) m9 [0 q. `4 S+ YNormal valued lattice-ordered groups% w" |7 u- t. s0 d, B. v2 [
    Normed vector spaces
    . g- ^# ]: G& V# g5 P2 ~Ockham algebras5 t7 E2 V) Z( z
    Order algebras0 \5 C8 E5 A* Y  [
    Ordered abelian groups3 u, `4 `' a2 E( y6 ?2 k
    Ordered fields/ G, f2 J6 D' r* J' c
    Ordered groups2 }. \4 |6 ]7 `3 T) {6 B
    Ordered monoids
    8 }) j- v. U; ~, U' a; FOrdered monoids with zero- n* w! b* V  h7 q  a+ L+ l
    Ordered rings
    9 o" ]# _2 \9 S2 F" ~# g! gOrdered semigroups, Finite ordered semigroups, Finite ordered semigroups with zero6 Y2 t; c! d. G$ ]
    Ordered semilattices, Finite ordered semilattices
    % I1 W$ [* K8 [/ B0 KOrdered sets
    : g& `/ ~/ R) i* W+ OOre domains
    % c) \, B9 {# ^Ortholattices
    ' G3 l/ _  j* y5 b1 ~' I. bOrthomodular lattices' Z) h( F$ F: W- r+ X
    p-groups0 C7 ?9 A" ]( y  Q) }, S- P9 N
    Partial groupoids
    $ p1 T0 h8 o+ n6 r" G5 }Partial semigroups+ i9 N+ @) s+ D" Z
    Partially ordered groups
    , ~, W& L5 _+ i" k" V' y& nPartially ordered monoids
    4 P9 u2 Q/ B; q1 APartially ordered semigroups
    . ^$ M/ N$ X" S3 e4 q, RPartially ordered sets% E. p" }" p; L8 `1 `
    Peirce algebras
    9 Z) S8 ]( h6 APocrims
    7 U5 l# p/ X2 V- q  Y2 h  lPointed residuated lattices
    - G, m; K; b9 r) J4 f3 r" x* u$ w. {Polrims+ @  W" K) D9 o2 P2 C
    Polyadic algebras& ]3 ]( q, o3 y, G2 {  x+ I
    Posets8 X6 C" p+ \! i/ v0 x7 D. a
    Post algebras# \* E$ r# }' O8 z+ x: L& \
    Preordered sets8 B- h3 d( [* L, T3 X/ `( ?. Y) y
    Priestley spaces+ M' |4 O* Q' J' N% c2 F
    Principal Ideal Domains
    : q, y- A$ Z) r% D& tProcess algebras* F" ?! Q9 t# T9 m1 @0 J
    Pseudo basic logic algebras
    ) U- a, h8 H! M( i: f4 |Pseudo MTL-algebras$ ~& i* h: N$ p" t, d% L2 i
    Pseudo MV-algebras! V7 U. B8 k! t: v  J% B5 G
    Pseudocomplemented distributive lattices0 P9 w% C8 i+ e3 O
    Pure discriminator algebras
    " \. [& P/ g, K" z; C+ k+ [( nQuantales
    4 s3 d# e8 r! s1 [0 Y8 g" OQuasigroups
    : b/ I, y5 `$ ~$ M( nQuasi-implication algebras# Q* y7 w2 b( B9 c) M5 D" f
    Quasi-MV-algebra
    4 R& A: ]# ?5 q- m0 WQuasi-ordered sets
    ' x! B& e! \/ T1 w$ GQuasitrivial groupoids
    8 q8 ~, ^, X" e. B7 z6 }Rectangular bands( W; z0 \: J0 J- x+ U$ ]6 a& l
    Reflexive relations
    % w6 M% H+ o0 S. LRegular rings
    - K  O7 m( z9 \% h9 D6 \$ z5 wRegular semigroups: t1 d9 l/ I' u% |$ U4 e
    Relation algebras: O! T$ W+ L& I9 x
    Relative Stone algebras
    , }% B4 C& _) W: ]& @9 ?; ?Relativized relation algebras) @% p1 ~  }1 e5 t/ L% f- a2 c4 m
    Representable cylindric algebras7 a1 A& h% N- d( W
    Representable lattice-ordered groups0 ]3 ]1 u. e- W4 I6 x( u
    Representable relation algebras
    6 ?9 e1 N+ q* p' s7 |6 NRepresentable residuated lattices: L3 R. `, A3 U! y9 }) \/ X
    Residuated idempotent semirings
    ! i5 n: v4 @* ?! t8 |2 z1 F- l: sResiduated lattice-ordered semigroups
    ) d+ y& M6 g& y$ c! h) b9 m  b+ ^. EResiduated lattices
    $ d- k. J. j* pResiduated partially ordered monoids7 {+ |5 U7 R; d9 Y2 W* l5 \# T
    Residuated partially ordered semigroups
    1 J2 Q7 ]9 N4 \  Y* rRings* e9 a# }, Z/ `6 {( y; K- \% B' P
    Rings with identity
    5 O& y4 O7 q6 y( D% XSchroeder categories
    9 |! W0 v% T( n/ P$ b/ cSemiassociative relation algebras- t9 L3 {( |6 w2 V) @8 ?1 n: W
    Semidistributive lattices+ ]5 @' j9 i. q5 e
    Semigroups, Finite semigroups
    ' C# I9 \5 W6 B/ ISemigroups with identity3 n) V+ I5 p9 E- [5 a1 d. l
    Semigroups with zero, Finite semigroups with zero
    & ~* O6 B' {% XSemilattices, Finite semilattices
    7 U7 F- x4 }5 `' b9 \8 a$ L  S+ ZSemilattices with identity, Finite semilattices with identity
    2 F# _4 k$ s! a3 ~. [% \Semilattices with zero) q0 g2 F' A+ H: e8 c8 W6 `$ }/ ^
    Semirings
    ; N6 v- j0 M0 f1 k; E5 wSemirings with identity) x+ e7 D1 n$ }4 H; Q- k+ w' D* d
    Semirings with identity and zero
    0 S3 z# u1 Q; f# v8 NSemirings with zero8 F, C/ U$ c; {
    Sequential algebras! B. E9 ^( q* A  i5 j! a& t# X
    Sets, H' a; n0 ^6 K1 ?9 W9 m
    Shells, X: j6 P! g* N7 L
    Skew-fields+ S  S2 {( g& x7 |5 Q* {3 s0 r- X
    Skew_lattices
    : K' M( b; e5 H1 C- u/ E0 E" e4 jSmall categories
    7 `: j8 e" T# t* n/ [$ e. h; LSober T0-spaces
    8 m7 f* R5 u1 B7 GSolvable groups. q* c7 ^' N9 F1 C( G: p2 ^
    Sqrt-quasi-MV-algebras
    / i4 V, c9 O! O* kStably compact spaces
    & y! x/ C* F" A. GSteiner quasigroups. U$ S5 W4 i2 `8 q
    Stone algebras
    2 P% o" B+ |( n7 q9 tSymmetric relations
    & Y& X' ?9 r) j+ g: {T0-spaces
      B. D# Z2 ]4 W7 {; _8 x) r( ?T1-spaces" |5 v& W$ O9 F0 n' X/ Q
    T2-spaces
    ; }: ?  N) Z0 b5 b1 p: |Tarski algebras
    6 B3 J1 w2 g4 m+ UTense algebras2 R: B6 J8 s$ D
    Temporal algebras; P+ `( j+ o% V- a: e
    Topological groups0 e" A  L* {7 d% X" I
    Topological spaces# z" |" j, o& |: G7 v0 g
    Topological vector spaces. A, |. S0 @' a2 a
    Torsion groups
    * R$ r" N; i+ vTotally ordered abelian groups
    ! M  y+ N* \% k, l& n- BTotally ordered groups0 [2 i0 l% [6 `" A& w1 w
    Totally ordered monoids( g$ K. @! k0 B
    Transitive relations
    2 P+ m3 V6 |) A6 v) FTrees
    * R" ~+ h& z9 h: E. kTournaments
    3 W# C! O' G% t! o6 RUnary algebras; }) y1 D& S5 ~, Q" m8 `, u7 T
    Unique factorization domains
    ' n* n( p7 A! `3 X* P9 ~4 B: n6 xUnital rings
    ' r; ?1 z& e% i( XVector spaces2 j! T) i" @2 e# a
    Wajsberg algebras0 w  l2 b; X  @7 q
    Wajsberg hoops  k7 ]/ A+ H1 R5 G8 B8 s6 ?
    Weakly associative lattices
    + W& P, u  w9 Q" e7 F  }Weakly associative relation algebras
    5 {/ _3 L4 m+ k9 \  o. KWeakly representable relation algebras; b* u& s2 E& {# ^$ V3 U
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    阿贝尔群Abel群" _9 y2 w  h1 c( R" k1 z( L: |
    阿贝尔格序群
    5 w3 O( w* e' ^9 l7 }! u: Y9 r阿贝尔下令组% w) n: J% g8 A6 f' D  i
    阿贝尔p -群& V6 _2 \$ |( O) [& V( t9 [
    阿贝尔部分下令组
    ; x, ?7 y  X& ], q8 G行动代数行动代数5 H7 o! j# l8 R- x
    行动晶格  Q" i* F! @& W( m7 ?
    代数晶格
    " h- H+ z1 d: P+ d7 ?! i7 \0 d# e. {; _代数偏序代数偏序集
    ! `$ C! Q8 k% ?- j代数半格
    , M8 Q  q2 }* F5 b2 n0 U, L寓言的寓言(范畴论)' ^$ p7 g2 M. M! B
    几乎分配格
    - W' ?3 X1 n' P6 b关联代数关联代数
    , Z; C. @7 X6 y- o$ G: e9 bBanach空间的Banach空间/ E4 I; Z2 a; u. W9 K. ~
    乐队乐队(数学),有限频带  q) \& ~" X2 |6 l! }8 b! f
    基本逻辑代数8 P8 L" P" D# {: W6 D9 g
    BCI -代数的BCI代数4 W# V6 a" N& I8 C9 F; t; q+ ?
    BCK -代数BCK代数; |; d, T/ D$ S1 Y4 @
    BCK联接,半格
    4 Z  w; [& A9 y  Y6 q9 E4 F) K& qBCK晶格
    1 X/ l& d) t, s' f5 I) VBCK -满足的半格5 |8 _8 A* c( g
    双线性代数" ~8 K! y# R6 h$ S! k
    BL -代数5 o" M9 k4 P% t- l
    Binars,有限的binars,与身份,身份和零与零,
    ) C2 E: \/ C4 F6 ^布尔代数布尔代数(结构)7 M; s$ n6 X5 Y- l' k
    与运营商布尔代数
    ( r: g5 q1 Y+ a5 e布尔组
    $ v( m# J$ m0 x0 U  k3 Q布尔晶格
    0 r2 i9 @' e8 c6 l8 N对关系代数的布尔模块
    2 ]; j, n3 x2 ?  f1 a布尔半群5 l) ~+ j% Y; _9 b5 d+ u& M
    布尔环# l, }8 L2 W5 u
    布尔半群; F# f5 W& d7 @* Q7 w. }
    布尔半格
    & D) @3 y6 a3 f$ C/ A& k* D布尔空间
    ' n1 v- S9 V$ @& D8 V9 _! t有界分配格. d' q6 \$ ?$ b! `
    界晶格+ n! j( V# Q  ?, C$ d8 V6 L, D1 A
    界剩余格' n2 S" g4 g  @; z6 s3 o
    Brouwerian代数
    : a; t% t4 i5 EBrouwerian半格+ ?* I* c' t! @1 q' C; x& @
    C *-代数
    / A9 M# S" P* P! c' W# L消可交换半群
    : A4 k3 X, f: [) {. k消可交换半群
    : v  t1 ]% M( N8 Z可消半群
    3 K4 Z: s9 L1 i; u& G7 u可消半群
    . y' t. c& C6 t消residuated格- u$ w1 `# `9 _2 z8 f; y, X. f5 k
    分类1 w$ |2 f2 H" D6 k1 H* R8 l0 o/ p1 E

    7 V  r* p8 M% a. y. V% @克利福德半群8 E7 L# n  |( x/ J/ [2 {2 H3 @3 Q: |
    Clifford代数
    " P( W; S2 L: K7 f3 E封闭代数
    9 k9 v- [9 ?  i4 V1 u可交换BCK -代数
    0 W- r. l2 T; Y/ m' S3 I交换binars,有限的可交换binars,与身份,零,身份和零) W6 Y  N2 S" V" Z" O! Q6 J
    可交换的组成下令半群,有限可交换积分下令半群
    9 s$ y7 S! L$ b& P( [, M; X. Z交换逆半群
    6 T9 K$ n% T' F/ H# i) s; Z交换点阵有序的半群
    3 c5 E* v; E( G. m+ u交换格序环
    & e3 }6 l5 k5 d# p9 O! _! c! a交换格序半群- n- B) M4 H$ r! M7 |
    交换半群,有限可交换半群,零的有限可交换半群6 M: C, L/ v+ s/ `) F$ e
    交换下令半群3 t; s+ F( m) P4 ~
    交换下令戒指' \/ B! b# D  }/ N0 D
    有限交换交换序半群,序半群) A9 [' }- B2 [* n) r$ D
    可交换部分有序的半群5 @, O) `( j# P3 I# u* t# Z
    可交换部分序半群* s4 e9 E5 W0 S" f' d
    交换正则环
    * x* b9 l+ G0 O; b交换剩余格序半群
    2 \1 v5 ^0 i# G/ g交换residuated格
    ' _! _7 A% X, Q* |* A) ^可交换residuated偏序半群  F& i" {  ?# M0 {1 T3 t
    可交换residuated偏序半群: _( C  c: Q1 |+ a
    交换环
    : X$ O/ s" U6 u& r$ l3 j0 ~与身份的交换环( `- B9 `+ z  m' d( h" {4 _" w
    交换半群,有限可交换半群,零! U( y2 H7 B6 ]  f# \
    紧凑型拓扑空间: o4 E2 U" j1 E& Y: k$ G
    紧凑的零维的Hausdorff空间
    % {, k6 G% g* X3 D' q2 P补充晶格
    ( h& @: E* C- \0 h1 b( |4 q- n3 f有补分配格* W5 C& k5 c6 i0 n: K0 c
    补充模块化晶格/ q  m5 v. X# v3 _8 f
    完整的分配格. A+ E" [( V! A9 O3 r& M
    完备格
    3 m; A5 {* n! S/ y* `- o; B; d完整的半格: ^+ u) w$ N6 T8 s# C
    完成部分订单
    7 L+ ], B: E+ Q& K' w完全正则豪斯多夫空间" l. J" U* r3 p  L* V2 F$ @
    完全正则半群
    0 }5 T" @2 g% l: \% t3 I* K连续格
    / L4 I: r6 G$ f) b; g. }连续偏序集
    # u2 ?, h1 y. ?- o柱形代数/ [  {* T# m' [0 Z' M. E
    德摩根代数2 i+ h5 O0 {6 o$ ]. f4 L
    德摩半群: e1 Z* _" x6 u7 u% |9 s; Q. a
    戴德金类别
    2 N9 u, t! [& M- x9 t. g戴德金域' j0 X& s4 i/ D/ s& Z- Q
    稠密线性订单4 v% C7 ]" C+ a! r
    有向图代数! j! {1 a' {3 p
    导演完成的部分订单
      F' L+ r9 a# K( x& e6 ^导演部分订单& w' V' |8 `, q2 Z! Q) W
    有向图
    0 p6 C. a3 p4 Y0 A8 f% MDirectoids! A1 G* o; X6 n" f) z
    分配寓言* R7 x+ U1 E' M7 ~2 q* Y
    分配的双p -代数$ G# L) P9 v- o# w: @
    分配的双P -代数
    0 {' V3 s3 q% ^( ?$ c% H" w分配格扩展
    : ^' A' F3 u. b/ N分配格
    , U; k1 S; W) B/ u# p1 l与运营商分配格
    & G2 z* V( O1 ]分配格序半群
    3 f. G# V9 D& k* U. A( \* ?分配p -代数6 W% \, ?% J. q
    分配residuated格# z5 c+ r" K$ t$ t; i9 i
    司代数
    4 I. G; k; }0 x! ~7 I; _/ [+ g7 W/ @科环1 M) L' ?0 B! @- G8 l2 X+ l; g0 {
    双Stone代数3 e# \5 W+ r2 W$ y1 _, [& \* ?
    邓恩半群) {+ X# g# y! Z3 T" S1 p
    动态代数
    % X; i! l" U3 [& V* f熵groupoids8 Z4 D5 ~6 ^$ _: O9 u
    等价代数+ F2 E" }  d9 L; K/ v" T0 O' e
    等价关系# A( F: l3 r; y8 c1 b+ i  h# S$ M
    欧几里德域
    : W3 a% B' h0 M8 T: R! }7 DF -环
    # ^" W( F" ]) Z, H( n! h. u字段/ `9 g& P! q: i6 U
    FL -代数/ z- P( }, W/ p1 x/ c8 u6 S9 e
    FLC -代数
    + t) |* K- M$ H6 z, `6 DFLE -代数
    * X5 ?6 T* {  c飞到-代数  X6 s9 ]( [: z0 x/ n
    FLW -代数
    # b5 y. |+ N9 O- V框架8 e) y3 _: L/ E& \
    功能戒指2 @$ j* O( |3 B/ ^: a3 V
    G - 组& v8 P6 u2 ~' K+ {
    广义BL -代数; D: Q/ x2 [. [- p4 r7 \0 R: G
    广义布尔代数
    * T6 t; S/ w! n/ n% H+ i2 V广义的MV -代数
    : I8 d9 Q  m5 {$ X/ O- t4 LGoedel代数
    1 f0 f6 T9 K# x3 H2 H# D/ c2 m5 S
    3 Q% Z8 T2 Q5 m9 C& pGroupoids' N: ]  k( q# {8 v. d, b6 x
    ; E# A2 g6 I: ?* x0 }: |3 E
    豪斯多夫空间
    6 ^4 A) H2 m+ S7 ^! {8 xHeyting代数3 U% `/ M* p3 x3 i6 _0 y& z
    希尔伯特代数
    , E1 \  k+ H4 u2 G. sHilbert空间
    , @  ?* t5 k- U( G1 s; E# [篮球
    $ J1 Y. G9 E! P7 H% K幂等半环
    : h; q  p( O" |8 Y+ M  K# r0 E幂等半环与身份9 o8 A' R- d/ P- T2 }" d
    幂等半环的身份和零
    , U! t( m# j; g; D- p# ]幂等半环与零
    2 h* A" A9 m7 F% m  k; C) W蕴涵代数
    ; j# w- }+ R0 g含蓄的格子
    ( v: `4 D, ~$ `$ S! o- N% b积分域
    4 r: X, x8 r0 b# c" R/ {积分下令半群,有限积分下令半群
    4 r6 Z3 l1 {+ ?8 @+ J积分关系代数5 u5 u' W8 |0 s6 i# D. Y
    集成剩余格5 j3 A# N: @* u: Y
    直觉线性逻辑代数
    7 a4 O7 Z( W& \" [4 W2 l逆半群3 ]1 g! i0 q# }- y- M* W, F
    合的格子; `2 {( f% @7 ~; s" }% n1 W2 y
    合的residuated格
    ! U9 B+ }+ T3 P( K加盟semidistributive格* S7 v; Q- R$ B. @5 L# m
    加盟半格
    ( W+ T2 w0 A+ g约旦代数/ F: w4 A8 g/ L  O& Z: a
    克莱尼代数
    ' y' b* R9 `0 ]) L* X克莱尼晶格
    2 \4 I( F% ]' o* A7 zLambek代数
    1 s4 r7 M8 O7 r5 |5 w9 [2 U格序群: B0 O0 L) n& d+ i
    格子下令半群
    2 |$ g8 K4 U2 r+ D) h9 w格序环: I$ P' w) J) m$ c( x6 C4 k* F/ F- n# \
    格序半群
    2 p) [( Z) c; T  Z- o. P' u7 Z. Q; Y; l5 L% v2 q. n* B: S
    左可消半群
    8 {' h1 L3 z( s; K李代数/ O- K- @( g, d2 d* P; J
    线性Heyting代数! ]  i+ N5 j. `- c% `' n
    线性逻辑代数( H4 w: |, J) R- G7 H" y$ W# ]% t2 Z
    线性订单4 t0 `5 y+ Q1 o0 O+ R
    语言环境
    5 D# s& Q4 f. f, J5 d局部紧拓扑空间
    * x  k, \1 P4 a# [5 Q循环' ^1 O" M. a) @
    n阶Lukasiewicz代数
    7 D" s  ]) c+ w- wM -组8 I2 P% U3 O9 a, P. U
    内侧groupoids
    # G: B  S4 z$ L内侧quasigroups1 j) n* o4 }, N6 @9 `
    会见semidistributive格0 U! R: L$ O, G5 f8 A! k3 w
    会见半格
    5 j% g  J0 z  U8 x3 h4 Z* L度量空间* @0 f4 x1 c3 |) @
    模态代数+ Q% |2 n5 L2 Z
    模块化晶格3 n8 ]0 f! I6 a3 z
    模块化ortholattices
    . w: E( z5 F* z8 h6 C7 T环比一个模块. }; H9 ], ]' I; M% o! S
    单子代数& N8 j3 @2 U4 O* i* n. y
    Monoidal t -模的逻辑代数
    , Q( J$ o; O$ p6 i3 B/ \; Y5 k- @幺半群,有限半群,零# ]  t- d, I) A9 A/ g, f
    Moufang循环
    4 ^# y) z) ~5 [( y% LMoufang quasigroups
    * [. S3 Q; i& P乘添加剂的线性逻辑代数
    * h- u) ]- ?* y2 E6 u" f乘晶格4 a& \; S: e- p% c' M' |0 q  `
    乘法半格) k2 \. j! s# h# e4 ~
    多重集
    1 t* y  b" F" B/ l3 GMV -代数2 i. [4 ^8 b+ G. I
    Neardistributive晶格$ V/ l2 W8 t; H* C7 O% b4 Q! H; f7 S
    近环' N% Q1 J" w" g1 l2 o
    近环与身份
    # {3 p+ h+ P/ t近田  r, _+ Y. I+ b' S
    幂零群
    0 J2 b* X8 N& s5 k8 I& F非结合的关系代数; S/ j' y0 _- A* F# F/ l2 D
    非结合代数) r7 e! x9 O+ U/ ]2 X$ ^5 |- i. J
    普通频段
    4 f) L8 W0 W! |! s正常价值格序群
    7 i/ Q. V3 y* g1 m+ v4 `8 t) R  g赋范向量空间6 J4 G% Y1 V7 N# ?* j5 r
    奥康代数
    4 {1 p$ d7 b% U7 C" Q订购代数; s% j+ e" X1 e/ S" {8 e
    有序阿贝尔群' q. a1 ~  Z5 n  Z% M  Z  h
    有序领域0 H) n1 I: T. x. ^
    序群" ~( b/ Y) t5 e# j8 {
    有序半群; b3 q: [( @5 m
    与零有序的半群% e* d1 q5 s/ R3 j7 ?
    有序环9 h; Z6 k6 b3 d
    序半群,有限序半群,有限下令零半群& {" r: g# j' Y
    有序半格,有限下令半格  o& b2 {3 H) d! k" {6 i( n
    有序集0 ^1 W% _6 A- z) M) Q1 }. C
    矿石域
    / l& L8 {: [3 l( u/ ]) P: KOrtholattices
      \0 X) N- D! V7 H6 S1 Y正交模格, W: K/ h% M2 }5 ?) L0 L
    p -群
    # _+ ?# j. Y! t3 {3 s3 ]$ Z部分groupoids
    % u4 Z1 x* {7 M  y8 t) E部分半群" R/ B- [" p( ]) }; G
    部分有序的群体, b/ L5 Y+ X1 v! ^. o5 x/ V
    部分下令半群
    4 V8 W2 J5 K0 \" o; }/ k' x部分序半群
    7 G& X' a( v/ B/ }2 ?部分有序集
      O8 c0 O/ F, W- s: B/ D皮尔斯代数& Y/ l) v0 C8 [# K: p
    Pocrims
    . W* W' t  |( _# D2 W指出residuated格( z( O( N. _* g4 I! i, ^
    Polrims3 z. N8 W! F1 g1 O5 p' p1 `5 P
    Polyadic代数1 ^7 j: B) X+ M8 F, w8 z5 f& I8 m
    偏序集. _/ n9 S$ C' O& M# T3 Y
    邮政代数
    % B& R9 e8 u- QPreordered套
    # w' Q- ?9 C+ H& k普里斯特利空间$ X* F9 V. b9 u* J) I" N3 M! T1 j
    主理想域' ?6 Y; t8 F; Z( M0 x
    进程代数
      P  S3 `/ ^6 y  g7 e8 o伪基本逻辑代数
    1 G! ^9 ~' L+ i* e伪MTL -代数6 c+ S# A. a" P) O% ^
    伪MV -代数
    & }" X: I8 ]: j, ]+ g3 `  vPseudocomplemented分配格9 {: {, C2 g4 S5 a& {9 A
    纯鉴别代数
    5 {' l9 ^, g. e  B; x, Z( I/ \0 RQuantales; q: K- ?8 N% m4 {4 {( V* r; `
    Quasigroups  t2 \" G$ o. k; _* Q
    准蕴涵代数
    % @/ R, b" d& j! {/ a) P准MV -代数
      T' I) l& o+ B- F$ Q# f- F: G准有序集
    # Y4 l% ]. x4 QQuasitrivial groupoids
    ; `/ x% O$ z. C, L1 W矩形条带' L5 U7 d! U( b, C& S  X
    自反关系4 K6 e. w8 F( L' W1 U+ h
    正则环9 z: D8 s/ Q3 q4 m' A& l8 o
    正则半群4 d1 {2 {. i7 t; p2 c$ r9 q
    关系代数
    . o1 B. W- Z& [" E& }3 j相对Stone代数
    5 J( d) O2 E. M1 H9 y6 t相对化的关系代数
    ; q. [6 m8 r0 @4 F$ `# u- f表示的圆柱代数/ H% C8 A: @$ `, P
    表示的格序群体* P( @; A0 ^/ L; a( _
    表示的关系代数; v9 o% P) j( p; J3 ~* l5 L* L
    表示的residuated格
    ' L1 [+ U" p3 i2 x2 Q9 ^/ pResiduated幂等半环
    ' a( n4 s1 `3 O# W剩余格序半群
    ) N* z. Q; \3 l8 N' |0 c$ ~剩余格, Z- ?( _; z) Z7 \
    Residuated部分有序的半群! B+ ]7 _: D1 o  k6 X/ j: f  M
    Residuated部分序半群
    % b" [: H& R+ p- N戒指8 l, v3 C4 f  H3 o& Q0 f+ i  i* v* Q
    戒指与身份
    / W* c/ ~* N0 N5 J, H- z1 h施罗德类别" K  {# z* @9 q& y2 m- H* }
    Semiassociative关系代数- v! M; x0 j: J4 E( f( R$ L
    Semidistributive晶格
    3 K- |/ k8 q+ n+ `9 t! F, D半群,有限半群
    2 ^; F7 H" J4 [. H. o  \! Z半群与身份
    6 E) a3 s  U, r$ [+ R* |6 P4 z半群与零,有限半群与零
    9 p+ r# k9 s0 @# N/ ?7 U: z' `/ ~半格,有限半格1 U3 ^8 s7 P3 c
    与身份,与身份的有限半格半格
    ! X* a* K  P5 o3 {7 C# n半格与零
    ; e' h( {" n* m( {4 V" z5 A半环
    * [# X$ E3 [4 M5 a0 n, c" K3 ~" B半环与身份; s% K# g9 w4 ?9 {
    半环与身份和零
    % {4 O, k' f$ K$ ^1 `半环与零
    ( M8 R9 T- h( }6 c# T& W连续代数
    ' b" s4 \6 ~7 W, v( I% O' N, _  \7 v2 S; M6 U, w

    . Q! m- X; t! u& c- C3 _, f歪斜领域
    8 o7 y  X  ~& U; a+ u- p) |Skew_lattices
    7 d. f: `7 Y5 A7 ~( f小类5 C4 \9 K* ]- l9 a
    清醒T0 -空间
    , }4 u3 x5 i% B3 x  ]8 E可解群& @( x& {  T% f3 W2 V1 C
    SQRT准MV -代数
    1 v) U5 f/ W1 U& {; @- N7 Q稳定紧凑的空间/ o; X* i9 k1 d
    施泰纳quasigroups
    ) a3 f: U/ w* f, W( y! j. d' bStone代数
    1 I6 }6 U, O6 L) r0 I对称关系
    4 r# j2 N) G# ]& FT0 -空间
    : v) h+ R+ o5 k8 ^4 aT1 -空间
    + n. N7 x  [2 d- ~0 y; P  dT2 -空间% G  f. u( |7 H0 I& Z; x  d
    塔斯基代数
    ) U( ^1 n5 n; T- M4 Z紧张代数
      Y. V* u2 A+ b* e& u时空代数
    ( c) T4 a: D4 C拓扑群
    & y7 ?4 \) Z% E" X) t9 B/ e拓扑空间
    1 z) P: F8 {; v) d  a: K拓扑向量空间0 Y, v4 H$ q' b1 ~0 _6 c( g
    扭转组6 s* T# Y. J: S/ V
    全序的阿贝尔群
    . e  M6 r. {+ ~0 a" x全序的群体6 P) U8 p/ A' J% ^1 l9 K$ i
    完全下令半群9 k4 u7 _* v4 K* p( S. H$ e# V
    Transitive的关系
    7 H8 e' z9 ~* i5 x& x  s$ Q6 N/ K/ n  h2 i, b$ L+ S* C
    锦标赛: R" ]% e$ ?( m4 e, Y+ p$ L# }
    一元代数
    ; c8 G# V# j" d) l" I唯一分解域( E/ {9 N$ s) C( j0 o1 j
    Unital环0 X  S4 g" v6 f+ p
    向量空间
    . G( D4 y1 u) jWajsberg代数$ h: f5 L% I8 B& p0 ?0 k7 m
    Wajsberg箍
    # {0 z( Z8 g- I( w. H; |& [弱关联格
    0 M3 t0 f0 b$ [6 D5 X" ], j弱关联关系代数9 g$ h: [  f/ K0 Z8 ?
    弱表示关系代数
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3295

    积分

    升级  43.17%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    qazwer168        

    0

    主题

    4

    听众

    53

    积分

    升级  50.53%

    该用户从未签到

    回复

    使用道具 举报

    ZONDA        

    0

    主题

    4

    听众

    3

    积分

    升级  60%

    该用户从未签到

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-12 12:01 , Processed in 0.494800 second(s), 78 queries .

    回顶部