QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3128|回复: 10
打印 上一主题 下一主题

Goldbach’s problem

[复制链接]
字体大小: 正常 放大
数学1+1        

23

主题

14

听众

2538

积分

升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    跳转到指定楼层
    1#
    发表于 2013-12-6 12:27 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Goldbach’s problem                    Su XiaoguangAbstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:[code]<SPAN style="FONT-FAMILY: Arial; COLOR: #333333; FONT-SIZE: 12pt; mso-font-kerning: 0pt; mso-ansi-language: EN" lang=EN></SPAN>[/code]A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1DeducedD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}, d; n' D5 y# M4 e
    Key words: Germany,Goldbach,even number, Odd number ,prime number, MR (2000) theme classification: 11 P32 Email:suxiaoguong@foxmail. com
    : W. d* \0 m5 ^) k) r/ E  X6 k
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem (pdf)
                           Su Xiaoguang
    ( w/ v- E' Q: R, C+ {     
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}

    ( E6 [8 d2 e0 x1 J4 z
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem9 x2 W/ D- r: m5 r6 G8 D! j
                        Su Xiaoguang8 p% p! V: S( V7 X( [5 ?9 c
    Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
    2 F" `# B* Z- x" K: W" {+ @# z' N. V  g; D& o8 [0 G3 ]& c# q% M
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
      E3 B/ R6 r! w* w8 J+ DC=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1- j  L7 x! Z9 T+ [
    Deduced7 A( i: v8 M( [" \- x% d2 j
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    + {" R3 E4 D- c* C: M- v1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    ) P5 {, F" k1 p: c+ ~: R& r8 f7 B" t6 k: F2 T, |: ~
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    ( s/ ]( U9 Q' G% G. r, JMR (2000) theme classification: 11 P32 0 j" h+ z+ R3 h" a& E
    Email:suxiaoguong@foxmail. com$ f  l- E# l" x/ v* e
    § 1 Introduction4 i+ |& N% r# b, E# F
              In 1742, the German mathematician Christian Goldbach (1690-1764), Put forward two speculated about the relationship between positive integers and prime number,using analytical language expressed as:, s6 V7 N8 l4 X- X+ y" p# w
    (A)For even number N% M1 S" x* O' m/ r
    2 q0 D$ ~+ j7 M' ^
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0* P, Z( Z+ K7 z- z

    2 k4 {; s9 L( g/ k(B)  For odd number N
    , A- z& |8 X( V6 u7 O+ }
    3 B! Y& j' l6 K8 ]# A1 x" `* IN\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
    8 Z( f+ ~" y: W3 {! x( O! g  v  }
    This is the famous GOldbach conjecture。If the proposition (A) true, then the proposition (B) True。So, as long as we prove Proposition (A), Launched immediately conjecture (B) is correct
    & c  z0 C/ T2 J: d          1 h3 b$ o4 \1 ]2 O, S: y
    §2 Correlation set constructor( m1 v2 }) j4 D' z# z
    A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}! c1 V- f1 f, I( C. Y4 R$ T$ j, w
    A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    0 r8 f6 J9 M) H8 }2 g, ]1 C# X8 `0 K8 V A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}' U* n2 D8 X& f1 v
    \cdots  I/ b7 M* q8 E: ~
    A=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    1 B- G: d' p7 S7 c& p% b% Lp_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      $ z9 U7 r& s& O8 P
      §3    Ready  Theorem
    ! o- ?3 W" f* J* c  nTheorem 1
    ( c0 ~0 Q4 i, N" s) Q- \M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set- E: E  a7 x7 Q* {$ t( R
      .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}- m5 y8 p$ b: P  e3 u, D
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots0 J- @; I. [" t3 ]& {
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    2 q3 h1 @$ y0 u8 X0 g$ IM_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots4 d4 k* o7 m" H8 z4 D# m; u! ?
    \cdots, \" A- g; H9 c5 ^0 `
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
    2 K+ |! |7 c( Y5 N5 O; P     Theorem 2 (Prime number theorem)
    # n- I2 t$ R8 A/ c0 e8 q, b7 x! ^0 ~* o: a2 d0 m
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
    1 e4 O" i2 ]/ w+ \6 \, R     Theorem 3  For even number x" M8 `* y1 D: ?" B
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ] 4 `3 H/ {0 {9 }& m6 G+ v/ `
    Proof: According to Theorem 1, (1)  0 j4 m2 b* d5 ~) Z1 X0 e
      \because A_{i},A_{j} Countable," _! x! N; u* v. j; [/ c8 T6 i
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
    5 C8 E* J( M5 [! N- ISimilarly, according to Theorem 1, (2), C countable
    3 C- K9 C- K( U% s Suppose
    5 Y; [# |" [0 E4 M( [! b8 C      M_{1}(x)=minM(x)
    ' [  j8 g( r' q- ~* {  N' Maccording to (2), Then we have
      a1 {- _' `& O8 C. M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
    5 C6 [( e# j: ]% v# I2 m# X% m Theorem 4  For even number x2 ]4 ]# G. ^$ |( p' X* O9 O/ [8 _
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        (3)
    , {6 y5 ~* x) kProof: According to (2),Then we have
    / U4 L! [- M* d- S2 G* U+ _M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
    & ~' ^# G. l! S+ k+ X0 U     Suppose
    0 f* L+ f- h: d8 p  L6 ^      M_{2}(x)=maxM(x)2 [. {  e4 U% K; e  W
    \therefore M_{2}(x), v) y! R- c7 @0 }' _4 @5 Y
    =\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2( \# p+ F9 @3 K" k2 l; i3 b
    =4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    6 x& v5 A5 d  N) ~§4 Goldbach's problem end
    1 J) N, G1 H6 X- F. ^Theorem 5  For evem number N3 p. ]- [! I9 t( t2 k& E
    N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}1 F! T% X2 f6 ~/ v" c2 k
         Proof: According to Theorem 27 Z# l5 ?2 H) ~: h1 {* c$ p: D
    N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4). E; z0 m, [" q+ T
    Let   c_{1}=min(\alpha ,\beta ),
    6 }! b" G$ A5 P+ w* O  aAccording to Theorem 3,Then we have
    * }5 W: P. `2 o' B( jD_{1}(N)=M_{1}(N)-M_{1}(N-2)
    ' v0 J  ~8 w& R* \' ~3 Z; pClear
    3 |5 q( Y7 D8 U( m. VD(N)\geq D_{1}(N)
    9 E& A& y0 J8 I- L+ C& D0 l' F\because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    / q- C. i+ k. Y\because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
    4 |$ x  q; a/ F\therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
    7 i  S9 P7 f9 a/ ]0 u' |$ C0 b/ GN\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow - w! p+ `5 I8 V- A, b$ ]
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    - h) D% P9 ~2 S2 ]& Y$ x$ Q" q% E Theorem 6  For evem number N5 Z( V1 D6 g, o, M! N: }* k& g1 M1 y
    N> 800000\Rightarrow D(N)\leq
    - D2 f; W  |% M5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}: K% @5 e( h' a' Z2 Y
    Proof : According to (4). I  ~$ ?/ V6 r0 l) x$ K2 E: \  P5 \' b
    Let  c_{2}=max(\alpha ,\beta )2 K, S! g2 Q7 f% G0 p( Z
    According to Theorem 4,Then we have: @; v6 F% M: O( p
    D_{2}(N)=M_{2}(N)-M_{2}(N-2)" z8 X8 n! \' R: ?- ^# c  P, p
    \because D(N)\leq D_{2}(N)6 h7 W5 H! d! I* X
    According to (5), Then we have8 [  K$ v$ K+ n, A. K" S
    D(N)\leq - ]6 b" [7 l1 H5 R7 _- j
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}* H) t3 \5 C# V- W: O
    Theorem 7 (Goldbach Theorem)  
    # a+ y1 n; l# O3 o( u5 _For evem number N
    + g! D9 F& s5 X7 \6 Q$ sN\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    & f7 L5 j/ Z! w6 E$ p2 ?& N) ZProof : According to Shen Mok Kong verification
    1 F7 u+ A  c2 C# K' i  `6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1- V# N2 L* k; D, k. s
    According to Theorem 5, Theorem 6, Then we have$ a( @, n) E* O. k' n
    N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    1 g4 Z( |1 [6 k/ O" S\therefore N\geq 6\Rightarrow D(N)\geq 1$ T+ K$ ]: \* V/ [( z
    Lemma 1 For odd number N
    3 g7 ~$ I( `6 X7 yN\geq 9\Rightarrow 4 Y. j- b4 I5 V6 Y& }
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    5 I& t4 i  \' uProof et  n\geq 42 k) a4 o7 _; N
    \because 2n+1=2(n-1)+3  v6 K6 `5 D) k* N# |$ h) I
    According to Theorem 7,  Then we have0 u( q, L8 i: I3 Q& x' U
    N\geq 9\Rightarrow T(N)\geq 1
    & w& b$ K4 M  ~8 o' `3 |) J  E* Y: N, q" M5 z8 R
    & {) {7 M# ?7 ~5 q' A# a; A1 c
        References
    9 x- z( f8 o' q6 I/ [! v[1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.; F: C* R1 Z. s0 g  @
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
      W1 J5 u$ J- l5 G& Z[3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.0 V( E2 e8 _5 G4 g8 P. G8 j& c" L
    4 P5 C9 [4 A9 G
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    阅读本帖需具备阅读LATEX文件的知识,作者有一word文件上传,有兴趣的读者可下载阅读。
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

                      Goldbach’s problem
                        Su Xiaoguang
    摘要:哥德巴赫问题是解析数论的一个重要问题。作者研究
    A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
    C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
    Deduced
    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    Key words: Germany,Goldbach,even number, Odd number ,prime number,
    MR (2000) theme classification: 11 P32
    Email:suxiaoguong@foxmail. com
    § 1  引言
    % H. K" C) u( M! r! l      1742年,德国数学家Christian Goldbach提出了关于正整数和素数之间关系的两个推测,用分析的语言表述为:
    (A)对于偶数N
    N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
    (B)  对于奇数N
    N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
            这就是著名的哥德巴赫猜想,如果命题(A)真,那么命题(B)真,所以,只要我们证明命题(A),立即推出猜想(B)是正确的
             
    §2相关集的构造
    3 [( c7 J2 v4 V% v3 F; L
    A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
    A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
    A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
    \cdots
    A=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
    p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
      §3    预备定理
    & @# \* H# z) C- l8 [9 V' \
    定理 1
    M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
      .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
    \because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
    M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
    M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
    \cdots
    \therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
         定理2 (素数定理)
    \pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
          定理3  对于偶数x
    x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
    证明 根据定理1, (1)  
      \because A_{i},A_{j} Countable,
    \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
    ; d% w1 o( ]' `. ]$ s9 ]类似地,根据定理1,
    (2), C可数  
    * P8 ?5 Y1 N3 f( {4 e
    设      M_{1}(x)=minM(x)
    根据(2),那么我们有.
    1 {/ B5 d1 a. B: P5 f6 h. ]( I M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
    定理4  对于偶数x
    x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        3
    证明: 根据(2),那么我们有+ ?* t, G. C- n
      M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
         设   M_{2}(x)=maxM(x)
    \therefore M_{2}(x)
    =\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
    =4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
    §4 Goldbach's problem 终结
    " V# J0 t# u. m# m9 `( s- R7 x定理 5  对于偶数N
    N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
        证明: 根据定理2
    * u1 u% Y, Q# w9 O! V N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
    让  c_{1}=min(\alpha ,\beta ),
    根据定理3,然后我们有; `' K& a3 l" L  n/ A& G, ~
          D_{1}(N)=M_{1}(N)-M_{1}(N-2)
    显然
    7 Z$ |( w; t# I3 n5 p& [       D(N)\geq D_{1}(N)
    \because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
    \because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
    \therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
    N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
    D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    定理6  对于偶数N
    N> 800000\Rightarrow D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    证明: 根据(4)
    让  c_{2}=max(\alpha ,\beta )
    根据定理4,然后我们有  x' s0 I* u5 \2 g0 ~( T' l
           D_{2}(N)=M_{2}(N)-M_{2}(N-2)
    \because D(N)\leq D_{2}(N)
    根据(5),那么我们有
    # a/ i2 v2 s, o" b! u4 s! `1 v, x       D(N)\leq
    5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    定理7 (Goldbach Theorem)  
    对于偶数N
    N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
    证明: 根Shen Mok Kong 的验证8 d; H! l2 \+ V8 N' ^% T. R! A- W  K
          6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1
    根据定理5, 定理 6, 然后我们有! |& D0 n& U9 i% ^; V6 \, W& N
          N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    \therefore N\geq 6\Rightarrow D(N)\geq 1
    引理1 对于奇数N
    N\geq 9\Rightarrow
    T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
    证明: 让 n\geq 4
    \because 2n+1=2(n-1)+3
    根据定理7,然后我们有# p2 g* C6 y( z% p- K* u# c; k0 {
          N\geq 9\Rightarrow T(N)\geq 1
        References
    [1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
    [2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
    [3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    我国数学家华罗庚,闵嗣鹤均对M(x)的下界做过研究,潘承洞,潘承彪对D(N)的上界做过研究,他们留下了遗憾,也留下了经验.
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
    , _9 z7 r7 p, z: }2 A" \1.83150(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 4.36166\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
    4 X( M; O7 O( z/ r0 \
    回复

    使用道具 举报

    数学1+1        

    23

    主题

    14

    听众

    2538

    积分

    升级  17.93%

  • TA的每日心情
    开心
    2025-10-10 18:05
  • 签到天数: 845 天

    [LV.10]以坛为家III

    新人进步奖

    若N>800000,% w0 [: i7 P; S
    则   1.83150(1-1/logN)[N/log^2(N-2)]≤D(N) ≤4.36166[1+2/logN +o(1)]×
    % K* R! @( D9 f$ [8 _  oN/{log[(N-2)/2]log(N-2)}
    ( S. j+ W8 ]  g2 C. H; h这就是哥德巴赫公式,有兴趣的读者不妨检测一下。
    回复

    使用道具 举报

    11

    主题

    12

    听众

    1720

    积分

    升级  72%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    回复

    使用道具 举报

    11

    主题

    12

    听众

    1720

    积分

    升级  72%

  • TA的每日心情
    开心
    2016-6-3 20:54
  • 签到天数: 300 天

    [LV.8]以坛为家I

    自我介绍
    菩提本无树,明镜亦非台。本来无一物,何处惹尘埃。

    社区QQ达人

    群组数学建模培训课堂1

    群组数模思想方法大全

    本帖最后由 1300611016 于 2014-1-4 09:08 编辑 # B. J/ T* t0 R) @

    7 I' Q+ Y: X8 T. R" X( m- K9 n太烦,可以用一个简明的形式,如·同偶质数对·形式展开详细见http://www.madio.net/thread-202136-1-1.html
    3 H9 O$ [) h# v. f+ g一般的用简明浅显的形式表述更容易推广,如能用初等数学表述这一问题,可以尝试一下。但不妨碍专业研究。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-7 12:15 , Processed in 1.549999 second(s), 100 queries .

    回顶部