- 在线时间
- 1084 小时
- 最后登录
- 2015-9-10
- 注册时间
- 2014-4-18
- 听众数
- 162
- 收听数
- 1
- 能力
- 10 分
- 体力
- 43976 点
- 威望
- 6 点
- 阅读权限
- 255
- 积分
- 15250
- 相册
- 0
- 日志
- 0
- 记录
- 1
- 帖子
- 3471
- 主题
- 2620
- 精华
- 1
- 分享
- 0
- 好友
- 513
升级   0% TA的每日心情 | 开心 2015-3-12 15:35 |
---|
签到天数: 207 天 [LV.7]常住居民III
 群组: 第六届国赛赛前冲刺培 群组: 国赛讨论 群组: 2014美赛讨论 群组: 2014研究生数学建模竞 群组: 数学中国试看培训视频 |
+ ]/ N( F. A2 F7 N' r+ ^+ n
Chapter 52
. G7 k7 i9 c; |9 ~TheMCMCProcedure
3 t" e$ q7 e- dContents
0 b9 b' ^* T- `+ r; E+ S- O7 y0 T: ROverview:MCMCProcedure ............................ 3478
! E+ H; V- g3 J1 }& iPROCMCMCComparedwithOtherSASProcedures ............34799 E0 Y% `6 ^/ x) l
GettingStarted:MCMCProcedure .......................... 3479. m/ u, [9 W2 G R8 X
SimpleLinearRegression ...........................34802 z; {* s1 a1 n
TheBehrens-FisherProblem ..........................3488' l' G$ t# `3 ]
Mixed-EffectsModel .............................3492
& B( d, c! j, G- @* c, FSyntax:MCMCProcedure .............................. 3495$ U+ X9 x( }' |5 C$ c& ]% R& i* Q3 f
PROCMCMCStatement ...........................3496
5 B9 q' f4 `( w0 E5 D, DARRAYStatement ...............................3508* T8 ?0 ?& d; |# w" t$ w
BEGINCNST/ENDCNSTStatement .....................3509- H* X1 t p5 D, n) |
BEGINNODATA/ENDNODATAStatements .................3511( v& P! u$ P; X, C. b4 L8 d! U
BYStatement .................................3511( X! o# |& n3 _8 S: Q4 r7 V- M2 m
MODELStatement ...............................35125 z" u) n: A" d8 ^( C. L
PARMSStatement ...............................35158 S5 a) }- D4 f
PRIOR/HYPERPRIORStatement .......................3516
5 f9 z' T6 B1 |& o5 yProgrammingStatements ...........................3516
% R" e2 g2 P+ v7 }" y! l. l. MUDSStatement .................................3518
6 ]3 ]' f/ ^& KDetails:MCMCProcedure .............................. 3522
" c( S( ]1 Y2 `5 n+ |HowPROCMCMCWorks ..........................35228 F0 }# {$ \- X5 m3 w
BlockingofParameters ............................3523
/ \4 Z( V7 j: i! m3 \Samplers ....................................35245 x2 [$ L1 _2 c" g4 P8 g
TuningtheProposalDistribution .......................3525/ D3 G" _7 f; x$ h+ \8 z D
InitialValuesoftheMarkovChains ......................3528
( A6 |. w/ E$ Y% e+ [AssignmentsofParameters ..........................3528
8 I" A0 U6 F2 _# QStandardDistributions .............................3530
6 S9 X: q- z' ]9 e# }$ S7 dSpecifyingaNewDistribution .........................3541
" N/ _/ w: @2 l. X- zUsingDensityFunctionsintheProgrammingStatements ...........3542 v6 A3 X8 L1 T+ a% K5 }
TruncationandCensoring ...........................3544
. [: h; T9 F. ^! i0 kMultivariateDensityFunctions ........................3546; _4 B, S4 S, e! g% b" H/ S: g
SomeUsefulSASFunctions ..........................35495 K1 `2 m& Z S7 U
MatrixFunctionsinPROCMCMC ......................3551! r, m" X/ ?, f& p; ^
ModelingJointLikelihood ...........................3556; D7 y/ H5 |: M" G4 Z8 h; K0 a
RegeneratingDiagnosticsPlots ........................35576 `# j G) T! l2 A9 W8 |- S
PosteriorPredictiveDistribution ........................3560+ {7 f: K, Y7 D
HandlingofMissingData ...........................3565. M) H; r+ m/ g/ r+ H
FloatingPointErrorsandOverflows ......................3565
8 u7 W( l4 S9 W" x. w6 @3 jHandlingErrorMessages ...........................3568, e4 H: x9 Z. R2 I% _# F
ComputationalResources ...........................35700 J9 l3 E- \. \9 \9 r: i9 y" N* \; n
DisplayedOutput ................................3571
$ W6 t+ i- R. w& }ODSTableNames ...............................35754 k. {. g6 s$ _8 h3 M$ ]6 V+ r
ODSGraphics .................................3577
/ Q* i6 L6 d4 Z8 [ }Examples:MCMCProcedure ............................ 3578
& C. K. V0 {' ]6 i& {, B UExample52.1:SimulatingSamplesFromaKnownDensity .........35787 y4 N/ S/ E7 x1 M% Q+ m' N. W
Example52.2:Box-CoxTransformation ...................3583
" g. m( j0 S' v# cExample52.3:GeneralizedLinearModels ..................3592: i) E1 J+ V- ^$ Q) N
Example52.4:NonlinearPoissonRegressionModels ............3605
4 f* p6 L Z8 w6 k* _Example52.5:Random-EffectsModels ...................3614
. A2 z& B2 X: IExample52.6:ChangePointModels .....................3630) R+ K$ M% x9 \, Y! a: t9 R
Example52.7:ExponentialandWeibullSurvivalAnalysis ..........3634; P" @2 B3 k9 m9 x/ O3 K
Example52.8:CoxModels ..........................3647
8 P6 ~$ l8 I+ T5 }! h1 mExample52.9:NormalRegressionwithIntervalCensoring .........3664
% S( V1 C m! I4 W* C& _Example52.10:ConstrainedAnalysis ....................3666) \" t9 F7 m) q8 A6 e/ n# j/ T3 K9 |
Example52.11:ImplementaNewSamplingAlgorithm ...........3672! O; n7 K& u! |6 Z# y. O+ a G/ g
Example52.12:UsingaTransformationtoImproveMixing .........3683! [0 \% i! F9 R- Y# P0 M
Example52.13:Gelman-RubinDiagnostics .................3693, C6 c6 d* r |+ R3 v5 Y
References ...................................... 3700) s* q! s4 U( ^4 o
| # [+ U- i: G& L4 u/ u5 G+ b! Q6 h7 a1 l
|
zan
|