QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1635|回复: 0
打印 上一主题 下一主题

[建模教程] 模拟退火算法

[复制链接]
字体大小: 正常 放大

16

主题

13

听众

224

积分

升级  62%

  • TA的每日心情
    开心
    2015-1-3 20:49
  • 签到天数: 54 天

    [LV.5]常住居民I

    群组国赛讨论

    跳转到指定楼层
    1#
    发表于 2014-8-21 23:45 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    [p=272, null, left]模拟退火算法


    # j, A; c5 S- Q8 B" q3 @; W2 z' l  P" Y
    3 g/ }( t) |1 G% c$ H' k, l+ t+ _9 d. W0 u
    [p=197, null, left]模拟退火算法来源于固体退火原理,

    [p=197, null, left]将固体加温至充

    [p=197, null, left]分高,再让其徐徐冷却,加温时,固体内部粒子随温升变

    [p=197, null, left]为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每

    [p=197, null, left]个温度都达到平衡态,最后在常温时达到基态,内能减为

    [p=197, null, left]最小。根据

    [p=197, null, left][size=197px]Metropolis

    [p=197, null, left]准则,粒子在温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]时趋于平衡

    [p=197, null, left]的概率为

    [p=197, null, left][size=197px]e-

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]E/(kT)

    [p=197, null, left],其中

    [p=197, null, left][size=197px]E

    [p=197, null, left]为温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]时的内能,

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]E

    [p=197, null, left]

    [p=197, null, left]其改变量,

    [p=197, null, left][size=197px]k

    [p=197, null, left]

    [p=197, null, left][size=197px]Boltzmann

    [p=197, null, left]常数。用固体退火模拟组合优

    [p=197, null, left]化问题,将内能

    [p=197, null, left][size=197px]E

    [p=197, null, left]模拟为目标函数值

    [p=197, null, left][size=197px]f

    [p=197, null, left],温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]演化成控

    [p=197, null, left]制参数

    [p=197, null, left][size=197px]t

    [p=197, null, left],即得到解组合优化问题的模拟退火算法:由初

    [p=197, null, left]始解

    [p=197, null, left][size=197px]i

    [p=197, null, left]和控制参数初值

    [p=197, null, left][size=197px]t

    [p=197, null, left]开始,

    [p=197, null, left]对当前解重复

    [p=197, null, left][size=197px]“

    [p=197, null, left]产生新解

    [p=197, null, left][size=197px]→

    [p=197, null, left]计算目标函数差

    [p=197, null, left][size=197px]→

    [p=197, null, left]接受或舍弃

    [p=197, null, left][size=197px]”

    [p=197, null, left]的迭代,并逐步衰减

    [p=197, null, left][size=197px]t

    [p=197, null, left]值,

    [p=197, null, left]算法终止时的当前解即为所得近似最优解,

    [p=197, null, left]这是基于蒙特

    [p=197, null, left]卡罗迭代求解法的一种启发式随机搜索过程。

    [p=197, null, left]退火过程由

    [p=197, null, left]冷却进度表

    [p=197, null, left][size=197px](Cooling Schedule)

    [p=197, null, left]控制,包括控制参数的初

    [p=197, null, left]

    [p=197, null, left][size=197px]t

    [p=197, null, left]及其衰减因子

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left]、每个

    [p=197, null, left][size=197px]t

    [p=197, null, left]值时的迭代次数

    [p=197, null, left][size=197px]L

    [p=197, null, left]和停止条

    [p=197, null, left]

    [p=197, null, left][size=197px]S

    [p=197, null, left]

    : G/ R) e6 B! Q! v2 ^. v" U( j

    + w5 B+ j- ]( u. u3 `4 m! ~. K* X# |
    [p=197, null, left]模拟退火算法可以分解为解空间、

    [p=197, null, left]目标函数和初始解

    [p=197, null, left]三部分。

    " w  `6 `1 `9 l$ A+ Q* C9 h% ]

    3 z0 U6 H8 H2 g* d7 k
    2 G; O0 r+ `  e[p=197, null, left]模拟退火的基本思想

    [p=197, null, left][size=197px]:

    " i1 W2 w3 Q; Y* i6 v3 u5 {
    ' H% d, X3 C$ m/ n- {$ v8 u
    [p=197, null, left][size=197px](1)

    [p=197, null, left]初始化:初始温度

    [p=197, null, left][size=197px]T(

    [p=197, null, left]充分大

    [p=197, null, left][size=197px])

    [p=197, null, left],初始解状态

    [p=197, null, left][size=197px]S(

    [p=197, null, left]

    [p=197, null, left]算法迭代的起点

    [p=197, null, left][size=197px])

    [p=197, null, left]

    , U; T% U2 K% {+ O9 s
    [p=197, null, left]每个

    [p=197, null, left][size=197px]T

    [p=197, null, left]值的迭代次数

    [p=197, null, left][size=197px]L

    ! c0 g  O$ U9 O% C
    9 u, P. V' e* k8 y

    * |% J7 x3 Y0 l# a# h# g) `6 B+ e& [1 g# `: s

    $ d& \+ q! X. c& r
    " y3 \) Y; _) B0 X5 T' Z; `
    + Q9 L: b  y- u; {5 v' \8 S, L8 J* @5 u& @6 ~
    2014全国一级建造师资格考试备考资料真题集锦建筑工程经济 建筑工程项目管理 建筑工程法规 专业工程管理与实务- _. \% p' q  v) |1 x2 t

    " N# h( Q  a* z
    1 o' m0 _& M6 R9 H( U) n

    4 m+ g1 }1 S4 e3 `- C1 K0 Q: m3 s/ n; E
    ; W' f9 I8 o: K. y
    & `* E0 g2 \* w/ e/ i! s2 y+ \9 }
    ; r5 W, G7 c3 _7 d( g" o
    [p=197, null, left][size=197px](2)

    [p=197, null, left][size=197px]对

    [p=197, null, left][size=197px]k=1

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]……

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]L

    [p=197, null, left][size=197px]做第

    [p=197, null, left][size=197px](3)

    [p=197, null, left][size=197px]至第

    [p=197, null, left][size=197px]6

    [p=197, null, left][size=197px]步:

    6 f3 @3 f; S0 T# ]

    ' o2 X6 i7 [$ m3 ]/ l5 f3 Q9 V* [* }, k
    [p=197, null, left][size=197px](3)

    [p=197, null, left][size=197px]产生新解

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    " g* S  `, p6 J- @
    : l$ J' Q' P4 _
    ( N  ]: R. V8 X9 x
    [p=197, null, left][size=197px](4)

    [p=197, null, left][size=197px]计算增量

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]=C(S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px])-C(S)

    [p=197, null, left][size=197px],其中

    [p=197, null, left][size=197px]C(S)

    [p=197, null, left][size=197px]为评价函数

    + }9 K+ ~- H  K

    0 S$ v" l3 @7 E; [, Q% m" u; \; U8 }+ j  V' V) q2 v
    [p=197, null, left][size=197px](5)

    [p=197, null, left][size=197px]若

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]<0

    [p=197, null, left][size=197px]则接受

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]作为新的当前解,否则以概率

    [p=210, null, left][size=197px]exp(-

    [p=210, null, left][size=197px]Δ

    [p=210, null, left][size=197px]t

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]/T)

    [p=210, null, left][size=197px]接受

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]作为新的当前解

    [p=210, null, left][size=197px].

    ( _, ^( h5 H( ^$ E9 Q
    ! F: G6 K1 C* g: ^2 q  B. E
    [p=197, null, left][size=197px](6)

    [p=197, null, left][size=197px]如果满足终止条件则输出当前解作为最优解,结

    [p=197, null, left][size=197px]束程序。

    3 l* F5 D/ f- [4 H9 C

    ' B$ t/ d$ _7 R4 p8 d6 h0 }. v6 i0 [$ |3 V, u/ m! b. D6 I7 _4 T
    [p=197, null, left][size=197px]终止条件通常取为连续若干个新解都没有被接受时

    [p=197, null, left][size=197px]终止算法。


      k8 R# a3 t$ x5 H9 U- W6 ]! f
    ; c/ ?  ?7 ?# P2 P* a/ J  v2 q2 T& R/ j9 w2 ~
    [p=197, null, left][size=197px](7) T

    [p=197, null, left][size=197px]逐渐减少,且

    [p=197, null, left][size=197px]T->0

    [p=197, null, left][size=197px],然后转第

    [p=197, null, left][size=197px]2

    [p=197, null, left][size=197px]步。


    8 p. d5 u& K# n* h. s. S( b$ t, `% t5 d1 M
    & X8 A* X! O1 a" e! j; J
    [p=197, null, left][size=197px]模拟退火算法新解的产生和接受可分为如下四个步

    [p=197, null, left][size=197px]骤:

    & q+ W+ ^# a, c6 d* F2 T' e6 a: m

    9 t9 D4 C) J$ _1 ^# X( |3 B; u! k! x% I7 I
    [p=197, null, left][size=197px]第一步是由一个产生函数从当前解产生一个位于解

    [p=197, null, left][size=197px]空间的新解;为便于后续的计算和接受,减少算法耗时,

    [p=197, null, left][size=197px]通常选择由当前新解经过简单地变换即可产生新解的方

    [p=197, null, left][size=197px]法,如对构成新解的全部或部分元素进行置换、互换等,

    [p=197, null, left][size=197px]注意到产生新解的变换方法决定了当前新解的邻域结构,

    [p=197, null, left][size=197px]因而对冷却进度表的选取有一定的影响。


    - k& h/ M+ @& r/ Y  ?. H/ ^! ^8 r7 b5 x) M1 O0 F
    ( [( P# s7 [3 ^/ V3 M( c
    [p=197, null, left][size=197px]第二步是计算与新解所对应的目标函数差。

    [p=197, null, left][size=197px]因为目标

    [p=197, null, left][size=197px]函数差仅由变换部分产生,

    [p=197, null, left][size=197px]所以目标函数差的计算最好按

    [p=197, null, left][size=197px]增量计算。事实表明,对大多数应用而言,这是计算目标

    [p=197, null, left][size=197px]函数差的最快方法。


      E. E- Z+ A$ x, M# o' t. ~$ q0 @
    + t: n% H  u  o3 C& P" e# J# x# K7 y: T7 n( a; S

    3 G3 C9 w' @) v( F, T( S" ]# F! T2 O

    4 c, Z5 f! S. B8 s! P. N. D: A: ^9 ]. n: F9 M* L5 T

      b$ v+ [5 ]0 B5 H4 u; B
    ( S. T  g! J. O5 U
    5 e& v( C9 O, @0 p# ~, q5 C1 v1 |( y) w5 a2 v; ?% Y3 @) B

    ! F" O- _! c4 Y5 E0 V' u! l; C# L( E/ D. k: n: g! G

    % E  r! R1 ^' B2 B$ ~7 `1 s0 M- q[p=197, null, left][size=197px]第三步是判断新解是否被接受

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]判断的依据是一个接

    [p=197, null, left][size=197px]受准则,最常用的接受准则是

    [p=197, null, left][size=197px]Metropo1is

    [p=197, null, left][size=197px]准则

    [p=197, null, left][size=197px]:

    [p=197, null, left][size=197px]若

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]<0

    [p=197, null, left][size=197px]则接受

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]作为新的当前解

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]否则以概率

    [p=197, null, left][size=197px]exp(-

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]/T)

    [p=197, null, left][size=197px]接受

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]作为新的当前解

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]。

    & ]# M+ K0 A8 s5 U) D+ R

    $ {- Q+ T+ N5 G: R9 f& p- V2 ]( C7 u' q- X. ~. L
    [p=197, null, left][size=197px]第四步是当新解被确定接受时,用新解代替当前解,

    [p=197, null, left][size=197px]这只需将当前解中对应于产生新解时的变换部分予以实

    [p=197, null, left][size=197px]现,同时修正目标函数值即可。此时,当前解实现了一次

    [p=197, null, left][size=197px]迭代。可在此基础上开始下一轮试验。而当新解被判定为

    [p=197, null, left][size=197px]舍弃时,则在原当前解的基础上继续下一轮试验。


    # f5 D" h5 F& p8 o; d
    & ]7 _' n: h9 _* {0 {. X3 |! Y
    5 F' @# Z( r9 |# Q+ ~6 H0 {( ]; w[p=197, null, left][size=197px]模拟退火算法与初始值无关,

    [p=197, null, left][size=197px]算法求得的解与初始解

    [p=197, null, left][size=197px]状态

    [p=197, null, left][size=197px]S(

    [p=197, null, left][size=197px]是算法迭代的起点

    [p=197, null, left][size=197px])

    [p=197, null, left][size=197px]无关;模拟退火算法具有渐近

    [p=197, null, left][size=197px]收敛性,

    [p=197, null, left][size=197px]已在理论上被证明是一种以概率

    [p=197, null, left][size=197px]l

    [p=197, null, left][size=197px]收敛于全局最

    [p=197, null, left][size=197px]优解的全局优化算法;模拟退火算法具有并行性


    ; @* s8 B; {* D0 F4 v, A% I9 \, R1 E- _9 }4 z

    1 H. g3 I3 k- l/ Z- h9 c% f& ^! O% T2 A. R

    . J8 v- Z6 @4 S8 j- @& L  F
    3 ^0 g8 [- G* B6 C
    ) ~0 V: Q$ j2 T+ Z
    / h  a9 O& U& p' B1 k+ W3 N/ ^) D0 @) v$ P  E. k/ `
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-22 14:02 , Processed in 0.420314 second(s), 48 queries .

    回顶部