- 在线时间
- 21 小时
- 最后登录
- 2015-9-11
- 注册时间
- 2014-6-28
- 听众数
- 13
- 收听数
- 0
- 能力
- 0 分
- 体力
- 611 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 224
- 相册
- 0
- 日志
- 1
- 记录
- 0
- 帖子
- 85
- 主题
- 16
- 精华
- 0
- 分享
- 0
- 好友
- 10
升级   62% TA的每日心情 | 开心 2015-1-3 20:49 |
---|
签到天数: 54 天 [LV.5]常住居民I
 群组: 国赛讨论 |
[p=272, null, left]模拟退火算法
# j, A; c5 S- Q8 B" q3 @; W2 z' l P" Y
3 g/ }( t) |1 G% c$ H' k, l+ t+ _9 d. W0 u
[p=197, null, left]模拟退火算法来源于固体退火原理,[p=197, null, left]将固体加温至充[p=197, null, left]分高,再让其徐徐冷却,加温时,固体内部粒子随温升变[p=197, null, left]为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每[p=197, null, left]个温度都达到平衡态,最后在常温时达到基态,内能减为[p=197, null, left]最小。根据[p=197, null, left][size=197px]Metropolis[p=197, null, left]准则,粒子在温度[p=197, null, left][size=197px]T[p=197, null, left]时趋于平衡[p=197, null, left]的概率为[p=197, null, left][size=197px]e-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E/(kT)[p=197, null, left],其中[p=197, null, left][size=197px]E[p=197, null, left]为温度[p=197, null, left][size=197px]T[p=197, null, left]时的内能,[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E[p=197, null, left]为[p=197, null, left]其改变量,[p=197, null, left][size=197px]k[p=197, null, left]为[p=197, null, left][size=197px]Boltzmann[p=197, null, left]常数。用固体退火模拟组合优[p=197, null, left]化问题,将内能[p=197, null, left][size=197px]E[p=197, null, left]模拟为目标函数值[p=197, null, left][size=197px]f[p=197, null, left],温度[p=197, null, left][size=197px]T[p=197, null, left]演化成控[p=197, null, left]制参数[p=197, null, left][size=197px]t[p=197, null, left],即得到解组合优化问题的模拟退火算法:由初[p=197, null, left]始解[p=197, null, left][size=197px]i[p=197, null, left]和控制参数初值[p=197, null, left][size=197px]t[p=197, null, left]开始,[p=197, null, left]对当前解重复[p=197, null, left][size=197px]“[p=197, null, left]产生新解[p=197, null, left][size=197px]→[p=197, null, left]计算目标函数差[p=197, null, left][size=197px]→[p=197, null, left]接受或舍弃[p=197, null, left][size=197px]”[p=197, null, left]的迭代,并逐步衰减[p=197, null, left][size=197px]t[p=197, null, left]值,[p=197, null, left]算法终止时的当前解即为所得近似最优解,[p=197, null, left]这是基于蒙特[p=197, null, left]卡罗迭代求解法的一种启发式随机搜索过程。[p=197, null, left]退火过程由[p=197, null, left]冷却进度表[p=197, null, left][size=197px](Cooling Schedule)[p=197, null, left]控制,包括控制参数的初[p=197, null, left]值[p=197, null, left][size=197px]t[p=197, null, left]及其衰减因子[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left]、每个[p=197, null, left][size=197px]t[p=197, null, left]值时的迭代次数[p=197, null, left][size=197px]L[p=197, null, left]和停止条[p=197, null, left]件[p=197, null, left][size=197px]S[p=197, null, left]。: G/ R) e6 B! Q! v2 ^. v" U( j
+ w5 B+ j- ]( u. u3 `4 m! ~. K* X# |
[p=197, null, left]模拟退火算法可以分解为解空间、[p=197, null, left]目标函数和初始解[p=197, null, left]三部分。" w `6 `1 `9 l$ A+ Q* C9 h% ]
3 z0 U6 H8 H2 g* d7 k
2 G; O0 r+ ` e[p=197, null, left]模拟退火的基本思想[p=197, null, left][size=197px]: " i1 W2 w3 Q; Y* i6 v3 u5 {
' H% d, X3 C$ m/ n- {$ v8 u
[p=197, null, left][size=197px](1) [p=197, null, left]初始化:初始温度[p=197, null, left][size=197px]T([p=197, null, left]充分大[p=197, null, left][size=197px])[p=197, null, left],初始解状态[p=197, null, left][size=197px]S([p=197, null, left]是[p=197, null, left]算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left],, U; T% U2 K% {+ O9 s
[p=197, null, left]每个[p=197, null, left][size=197px]T[p=197, null, left]值的迭代次数[p=197, null, left][size=197px]L ! c0 g O$ U9 O% C
9 u, P. V' e* k8 y
* |% J7 x3 Y0 l# a# h# g) `6 B+ e& [1 g# `: s
$ d& \+ q! X. c& r
" y3 \) Y; _) B0 X5 T' Z; `
+ Q9 L: b y- u; {5 v' \8 S, L8 J* @5 u& @6 ~
2014全国一级建造师资格考试备考资料真题集锦建筑工程经济 建筑工程项目管理 建筑工程法规 专业工程管理与实务- _. \% p' q v) |1 x2 t
" N# h( Q a* z1 o' m0 _& M6 R9 H( U) n
4 m+ g1 }1 S4 e3 `- C1 K0 Q: m3 s/ n; E
; W' f9 I8 o: K. y
& `* E0 g2 \* w/ e/ i! s2 y+ \9 }
; r5 W, G7 c3 _7 d( g" o
[p=197, null, left][size=197px](2) [p=197, null, left][size=197px]对[p=197, null, left][size=197px]k=1[p=197, null, left][size=197px],[p=197, null, left][size=197px]……[p=197, null, left][size=197px],[p=197, null, left][size=197px]L[p=197, null, left][size=197px]做第[p=197, null, left][size=197px](3)[p=197, null, left][size=197px]至第[p=197, null, left][size=197px]6[p=197, null, left][size=197px]步:6 f3 @3 f; S0 T# ]
' o2 X6 i7 [$ m3 ]/ l5 f3 Q9 V* [* }, k
[p=197, null, left][size=197px](3) [p=197, null, left][size=197px]产生新解[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′" g* S `, p6 J- @
: l$ J' Q' P4 _
( N ]: R. V8 X9 x
[p=197, null, left][size=197px](4) [p=197, null, left][size=197px]计算增量[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]=C(S[p=197, null, left][size=197px]′[p=197, null, left][size=197px])-C(S)[p=197, null, left][size=197px],其中[p=197, null, left][size=197px]C(S)[p=197, null, left][size=197px]为评价函数+ }9 K+ ~- H K
0 S$ v" l3 @7 E; [, Q% m" u; \; U8 }+ j V' V) q2 v
[p=197, null, left][size=197px](5) [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解,否则以概率[p=210, null, left][size=197px]exp(-[p=210, null, left][size=197px]Δ[p=210, null, left][size=197px]t[p=210, null, left][size=197px]′[p=210, null, left][size=197px]/T)[p=210, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px]. ( _, ^( h5 H( ^$ E9 Q
! F: G6 K1 C* g: ^2 q B. E
[p=197, null, left][size=197px](6) [p=197, null, left][size=197px]如果满足终止条件则输出当前解作为最优解,结[p=197, null, left][size=197px]束程序。3 l* F5 D/ f- [4 H9 C
' B$ t/ d$ _7 R4 p8 d6 h0 }. v6 i0 [$ |3 V, u/ m! b. D6 I7 _4 T
[p=197, null, left][size=197px]终止条件通常取为连续若干个新解都没有被接受时[p=197, null, left][size=197px]终止算法。
k8 R# a3 t$ x5 H9 U- W6 ]! f
; c/ ? ?7 ?# P2 P* a/ J v2 q2 T& R/ j9 w2 ~
[p=197, null, left][size=197px](7) T[p=197, null, left][size=197px]逐渐减少,且[p=197, null, left][size=197px]T->0[p=197, null, left][size=197px],然后转第[p=197, null, left][size=197px]2[p=197, null, left][size=197px]步。
8 p. d5 u& K# n* h. s. S( b$ t, `% t5 d1 M
& X8 A* X! O1 a" e! j; J
[p=197, null, left][size=197px]模拟退火算法新解的产生和接受可分为如下四个步[p=197, null, left][size=197px]骤:& q+ W+ ^# a, c6 d* F2 T' e6 a: m
9 t9 D4 C) J$ _1 ^# X( |3 B; u! k! x% I7 I
[p=197, null, left][size=197px]第一步是由一个产生函数从当前解产生一个位于解[p=197, null, left][size=197px]空间的新解;为便于后续的计算和接受,减少算法耗时,[p=197, null, left][size=197px]通常选择由当前新解经过简单地变换即可产生新解的方[p=197, null, left][size=197px]法,如对构成新解的全部或部分元素进行置换、互换等,[p=197, null, left][size=197px]注意到产生新解的变换方法决定了当前新解的邻域结构,[p=197, null, left][size=197px]因而对冷却进度表的选取有一定的影响。
- k& h/ M+ @& r/ Y ?. H/ ^! ^8 r7 b5 x) M1 O0 F
( [( P# s7 [3 ^/ V3 M( c
[p=197, null, left][size=197px]第二步是计算与新解所对应的目标函数差。[p=197, null, left][size=197px]因为目标[p=197, null, left][size=197px]函数差仅由变换部分产生,[p=197, null, left][size=197px]所以目标函数差的计算最好按[p=197, null, left][size=197px]增量计算。事实表明,对大多数应用而言,这是计算目标[p=197, null, left][size=197px]函数差的最快方法。
E. E- Z+ A$ x, M# o' t. ~$ q0 @
+ t: n% H u o3 C& P" e# J# x# K7 y: T7 n( a; S
3 G3 C9 w' @) v( F, T( S" ]# F! T2 O
4 c, Z5 f! S. B8 s! P. N. D: A: ^9 ]. n: F9 M* L5 T
b$ v+ [5 ]0 B5 H4 u; B
( S. T g! J. O5 U
5 e& v( C9 O, @0 p# ~, q5 C1 v1 |( y) w5 a2 v; ?% Y3 @) B
! F" O- _! c4 Y5 E0 V' u! l; C# L( E/ D. k: n: g! G
% E r! R1 ^' B2 B$ ~7 `1 s0 M- q[p=197, null, left][size=197px]第三步是判断新解是否被接受[p=197, null, left][size=197px],[p=197, null, left][size=197px]判断的依据是一个接[p=197, null, left][size=197px]受准则,最常用的接受准则是[p=197, null, left][size=197px]Metropo1is[p=197, null, left][size=197px]准则[p=197, null, left][size=197px]: [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解[p=197, null, left][size=197px]S[p=197, null, left][size=197px],[p=197, null, left][size=197px]否则以概率[p=197, null, left][size=197px]exp(-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]/T)[p=197, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px]S[p=210, null, left][size=197px]。& ]# M+ K0 A8 s5 U) D+ R
$ {- Q+ T+ N5 G: R9 f& p- V2 ]( C7 u' q- X. ~. L
[p=197, null, left][size=197px]第四步是当新解被确定接受时,用新解代替当前解,[p=197, null, left][size=197px]这只需将当前解中对应于产生新解时的变换部分予以实[p=197, null, left][size=197px]现,同时修正目标函数值即可。此时,当前解实现了一次[p=197, null, left][size=197px]迭代。可在此基础上开始下一轮试验。而当新解被判定为[p=197, null, left][size=197px]舍弃时,则在原当前解的基础上继续下一轮试验。
# f5 D" h5 F& p8 o; d
& ]7 _' n: h9 _* {0 {. X3 |! Y
5 F' @# Z( r9 |# Q+ ~6 H0 {( ]; w[p=197, null, left][size=197px]模拟退火算法与初始值无关,[p=197, null, left][size=197px]算法求得的解与初始解[p=197, null, left][size=197px]状态[p=197, null, left][size=197px]S([p=197, null, left][size=197px]是算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left][size=197px]无关;模拟退火算法具有渐近[p=197, null, left][size=197px]收敛性,[p=197, null, left][size=197px]已在理论上被证明是一种以概率[p=197, null, left][size=197px]l [p=197, null, left][size=197px]收敛于全局最[p=197, null, left][size=197px]优解的全局优化算法;模拟退火算法具有并行性
; @* s8 B; {* D0 F4 v, A% I9 \, R1 E- _9 }4 z
1 H. g3 I3 k- l/ Z- h9 c% f& ^! O% T2 A. R
. J8 v- Z6 @4 S8 j- @& L F
3 ^0 g8 [- G* B6 C
) ~0 V: Q$ j2 T+ Z
/ h a9 O& U& p' B1 k+ W3 N/ ^) D0 @) v$ P E. k/ `
|
zan
|