- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit/ R! k( b5 o! q1 G5 A
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k49 U4 T6 U, ~7 n( l/ O
% k6->k6 k7->k7
4 u+ v! J; x8 |. X; J9 [7 Y' b% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
% c$ x1 I9 x) G1 k' Q4 ?% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
; q: W) c1 ?+ Y: p2 [' `1 q; A# e% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);& |! l' P9 T$ b
% dLadt = k(7)*C(Hmf);# H( Q5 }5 J9 o- O
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);. |2 P4 D0 e2 d7 z7 q) l. H) l' v
clear all) |7 [* C# f p4 ~6 t
clc3 ~/ ?. ?4 r4 l
format long
+ I0 G( c6 q0 H% t/min Glc Fru Fa La HMF/ mol/L
% n- V& Q5 E& W+ j1 n Kinetics=[0 0.25 0 0 0 0
$ c% B' t% k: S7 n: A9 D O 15 0.2319 0.01257 0.0048 0 2.50E-04
0 N% L: a% y7 g8 W 30 0.19345 0.027 0.00868 0 7.00E-04
B x& N4 b, c* m& O+ K 45 0.15105 0.06975 0.02473 0 0.0033 r$ A# p5 D' a
60 0.13763 0.07397 0.02615 0 0.004284 R% o3 f% F* ^) {& a) G2 a g
90 0.08115 0.07877 0.07485 0 0.01405* l3 q* M7 z! K* ]6 }
120 0.0656 0.07397 0.07885 0.00573 0.02143. l, U s0 \$ `) r" o6 |
180 0.04488 0.0682 0.07135 0.0091 0.036236 ]6 Z3 p6 a5 I8 |
240 0.03653 0.06488 0.08945 0.01828 0.05452
! t9 q5 }4 v; `, U8 O4 T 300 0.02738 0.05448 0.09098 0.0227 0.0597& o4 N1 R% X0 F6 H
360 0.01855 0.04125 0.09363 0.0239 0.06495];
' E' H, d, K$ W }4 n2 }8 ~1 A" m7 Sk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值( W' f$ Q* f% W
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
4 b/ k, p" s2 f6 k- v$ o7 Dub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限& Q5 q; b! T9 D. C$ W3 N4 D& B
x0 = [0.25 0 0 0 0];2 i/ u) n K4 H" t# y9 V, b
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
5 A L9 z9 e& o# @3 s0 L" U% warning off
' z$ X! n H" ^- P- s% 使用函数 ()进行参数估计
" U- ?" J7 d" |& |[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
# ]/ Z. S+ ?7 |3 M8 ifprintf('\n使用函数fmincon()估计得到的参数值为:\n')9 f5 S0 r; F9 k; }
fprintf('\tk1 = %.11f\n',k(1)); i( p* ^' o1 ~% f; Q
fprintf('\tk2 = %.11f\n',k(2))
- C6 p( i4 s6 O+ z- }fprintf('\tk3 = %.11f\n',k(3))
9 [: I, L/ B/ C9 B- y! K$ G# ^fprintf('\tk4 = %.11f\n',k(4))
2 `0 s0 }' s2 L. O- ^fprintf('\tk5 = %.11f\n',k(5))) m5 e% k) v7 x y
fprintf('\tk6 = %.11f\n',k(6))
+ W3 ?) A8 i% W& w6 j' Kfprintf('\tk7 = %.11f\n',k(7))
) ?) e' B3 e1 I" z0 ~) O9 jfprintf('\tk8 = %.11f\n',k(8))& l6 z3 n* ^& k( c. k" |3 h
fprintf('\tk9 = %.11f\n',k(9))* v- w6 i' v: U4 i1 ~: _
fprintf('\tk10 = %.11f\n',k(10))
9 c7 Y; D# N5 p& J% [8 p$ Lfprintf(' The sum of the squares is: %.1e\n\n',fval)
6 n8 a5 P% y' `6 Q0 w, Kk_fm= k;& k( J: b" t3 W& M( y: l% ~, m0 E4 }
% warning off7 R: J+ E* W9 Q4 |. N1 x2 x) i# [
% 使用函数lsqnonlin()进行参数估计, c8 v$ J7 L/ `$ C% @* C' w. r
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...6 H1 ^8 N K& {
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); ) c6 g, m! J* D( F: `$ `' u2 A
ci = nlparci(k,residual,jacobian);
. @3 U) f0 t. }. d+ u7 z4 Mfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')+ M3 {' o. J: K: K, I* z& }
fprintf('\tk1 = %.11f\n',k(1))
5 }$ E# H0 }6 D" s$ yfprintf('\tk2 = %.11f\n',k(2)) r7 W5 _$ j. Y" N. Y2 _
fprintf('\tk3 = %.11f\n',k(3))
0 Z. x. A+ x4 p! @& B+ ], M; _/ L+ p$ jfprintf('\tk4 = %.11f\n',k(4)). r5 f& Z) @( Y( Z* L7 u
fprintf('\tk5 = %.11f\n',k(5))
* g' X+ e9 _& }# f3 T) M- ufprintf('\tk6 = %.11f\n',k(6))0 `( e# o9 V+ B( E8 v# V4 Q
fprintf('\tk7 = %.11f\n',k(7)) b9 {. k! H1 g; O w8 H/ S; j) z9 A
fprintf('\tk8 = %.11f\n',k(8))& P7 k1 G( ~8 l y4 K
fprintf('\tk9 = %.11f\n',k(9))
& Z& b& w2 Z; u/ g; B2 b1 v; Efprintf('\tk10 = %.11f\n',k(10))
' P5 Z/ f4 X: g( U; I g3 i9 [, Sfprintf(' The sum of the squares is: %.1e\n\n',resnorm)+ M7 o2 _7 G) h& ~6 j
k_ls = k;
. }% I# Q' `% d% soutput! }9 Q0 w) ]3 `: B# Q9 }# I
warning off
% X* U# j9 ^! u& k7 \' l% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
. J% C7 F, L& v/ o3 s7 s9 b! yk0 = k_fm;
& m( `. ~! M3 h, G8 i$ I& G[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
1 s1 ^, o) K9 T lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
! c K* O; o4 G4 z3 C" Wci = nlparci(k,residual,jacobian); B% T4 S: @+ G) x, k- L4 b
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
; C- k0 d( J+ ^4 W, [& u8 Afprintf('\tk1 = %.11f\n',k(1))
3 l5 Y0 ?# [6 vfprintf('\tk2 = %.11f\n',k(2))
0 M/ a) w$ U1 v3 }1 Z# E4 ~fprintf('\tk3 = %.11f\n',k(3))
/ a# [8 j0 [% m" U3 S. t' J, ?* wfprintf('\tk4 = %.11f\n',k(4))) n2 s! Y: l6 Y. {
fprintf('\tk5 = %.11f\n',k(5)) [; A/ i8 W; c" L; [5 Z' y) @
fprintf('\tk6 = %.11f\n',k(6))2 r$ e( F+ A" p" [
fprintf('\tk7 = %.11f\n',k(7))
. c/ L5 y* ~- ffprintf('\tk8 = %.11f\n',k(8))
& \* R( ?3 r6 U0 }fprintf('\tk9 = %.11f\n',k(9))0 `# V, ]$ ~0 ?; t6 h! ]8 T+ H) K
fprintf('\tk10 = %.11f\n',k(10))
$ h& H" P) k& ?" S8 W! T! }fprintf(' The sum of the squares is: %.1e\n\n',resnorm)/ k( y3 z1 T2 }- k7 r
k_fmls = k;4 |9 u* p+ u- K) C7 P; K$ b
output) a$ H1 }9 z+ l0 ]7 |9 T( j
tspan = [0 15 30 45 60 90 120 180 240 300 360];
7 x; O' i( o' I: P+ q6 X[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
0 N8 p' B7 _3 r( V( K+ j) _figure;2 \6 t* A7 a, g, I
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')( _% Q; C2 T* G, P$ X4 n' T% w) g
figure;plot(t,x(:,2:5));
$ F& _) Q7 l% w9 s( |" b& Hp=x(:,1:5)! Y# O1 B( H9 t9 t3 u( j
hold on
0 E( l: F: d6 D5 Lplot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
/ Q8 ~- ~) ]; p5 h" G5 I3 i3 O( ?! ?9 J' j/ r, V3 C; F+ ?0 t
. u4 D. f) r: K$ _" g5 @, ~
1 S9 L9 Z/ [5 M, ~. ofunction f = ObjFunc7LNL(k,x0,yexp)
: _2 P4 J3 T% D" itspan = [0 15 30 45 60 90 120 180 240 300 360];
0 f; W. @! o4 A/ ~( N `% C[t, x] = ode45(@KineticEqs,tspan,x0,[],k); 0 y* P* _1 N% ~9 ~1 l: d+ ]0 B
y(:,2) = x(:,1);7 _# f+ i+ X- A$ i" t+ E I
y(:,3:6) = x(:,2:5);# M- z( P; l# k) }
f1 = y(:,2) - yexp(:,2);2 Z) F" D. ^+ S0 z. d: s
f2 = y(:,3) - yexp(:,3);3 L& \8 @4 Y' _- V$ p5 s
f3 = y(:,4) - yexp(:,4);4 O3 o; t. }; x @" C+ R8 i% [
f4 = y(:,5) - yexp(:,5);
- N* A* w* f. p2 K# uf5 = y(:,6) - yexp(:,6);
: p* O% y% L8 q. C7 df = [f1; f2; f3; f4; f5];( z4 }1 P* z& i: L8 k0 _
' R2 ]6 P0 N5 f2 }3 j
, ~' d: o( h% x) r* _( L! }3 f3 _5 |3 j. ~. M8 ~) {
function f = ObjFunc7Fmincon(k,x0,yexp). O5 a2 w9 H+ Y" i8 F
tspan = [0 15 30 45 60 90 120 180 240 300 360];
1 N1 _; `# N( \! j) o3 J( o[t x] = ode45(@KineticEqs,tspan,x0,[],k); $ K$ C6 J. L# C
y(:,2) = x(:,1);& T) y; i* \7 L# G% J
y(:,3:6) = x(:,2:5);
! b/ F$ {) L& i% u3 @5 yf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...1 D9 o# o+ z' c/ u8 ]
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
1 \ k5 F& ~9 r% x, N9 ~7 D: g + sum((y(:,6)-yexp(:,6)).^2) ;
3 O- Q7 x; N/ F5 w) j& ~' `3 @ W' _% O/ s! v+ ~
- Q- F" d/ v) \- P' ~. @6 Z) A5 b, F
8 Y+ G0 Y# S0 ~8 ]$ g3 @3 n/ ] _function dxdt = KineticEqs(t,x,k)
0 i1 C9 |& O; OdGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);5 O- ]5 w4 U3 e8 `" p. q
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);0 Z4 ]- E" q) r' b
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);$ u0 x4 Y8 M9 `! N" Y
dLadt = k(7)*x(5);) [3 ]) c9 d0 d2 `9 B# \ i
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
+ W# `+ I {( C. [dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];2 {4 z6 [2 w+ z$ ?2 b
! d# \" a( v: G0 I+ l" @
& C7 r, Z( g8 I7 o4 X( C
|
zan
|