- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit
3 y4 V! x7 V7 T5 w# d% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k47 r8 S* h: } T% Z+ e
% k6->k6 k7->k7+ m2 H/ \( {& x8 R8 m
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
# d! R& {& K6 D) l* h% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);- T) o9 q3 Z' f% d* u
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
* X! J" t) Z; D' Y$ K% dLadt = k(7)*C(Hmf);: q* u3 }5 r- D- }$ p2 _4 v
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
4 ^6 B0 ?) A" A- y! A5 S# Aclear all
. f; D& \3 i" W Q# Mclc
% l( Z1 T* J, l, A; sformat long
8 K' I: l8 l- R: j$ Z) l% t/min Glc Fru Fa La HMF/ mol/L / A. L* ]: e: P5 u# C
Kinetics=[0 0.25 0 0 0 0: X# S0 Y/ W) ~1 n- q+ H
15 0.2319 0.01257 0.0048 0 2.50E-04
$ M6 h5 m) Y3 G8 v7 H1 y 30 0.19345 0.027 0.00868 0 7.00E-04' r* L3 K3 H4 Y, y" a
45 0.15105 0.06975 0.02473 0 0.0033+ j$ G2 _7 A0 \. n
60 0.13763 0.07397 0.02615 0 0.00428
* l6 G$ Z6 b4 X( P( g 90 0.08115 0.07877 0.07485 0 0.01405
: ~% M4 v% \' G* l 120 0.0656 0.07397 0.07885 0.00573 0.021439 a) ?: a: J4 E$ J9 k' O- `
180 0.04488 0.0682 0.07135 0.0091 0.03623
" P, f$ J' S* S" O 240 0.03653 0.06488 0.08945 0.01828 0.05452& _$ s" U4 T; ~
300 0.02738 0.05448 0.09098 0.0227 0.0597
: _' n; W3 o' B$ r 360 0.01855 0.04125 0.09363 0.0239 0.06495];$ W) g8 S5 E4 p+ ]) D6 ?; v
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值5 H; |, S8 k% M" j5 p Z+ I
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
8 P8 F: v) k/ i' G9 gub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限( b! A3 H0 k3 T4 Z) q
x0 = [0.25 0 0 0 0];; K; _! T0 H- x" H" x
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
* U7 \6 b8 f5 X) w' h) g% warning off1 i: B _& p: B# o- ^
% 使用函数 ()进行参数估计1 J: J2 c' a$ S2 P G
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);) W& X/ o6 X# ?3 M9 Y6 v
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')+ u7 L/ j- Y3 p/ ?/ i
fprintf('\tk1 = %.11f\n',k(1))- [. d. W# f. `$ D- }4 i! g7 D Y9 s
fprintf('\tk2 = %.11f\n',k(2))1 p* G* @; O/ ]7 D& O7 Z/ B2 i4 y8 M
fprintf('\tk3 = %.11f\n',k(3))
. n$ p2 R0 G# s+ ]* ]$ a( ufprintf('\tk4 = %.11f\n',k(4))2 T4 q4 w# Z3 b6 i1 ~0 ]# O! [% g
fprintf('\tk5 = %.11f\n',k(5))) x9 j" ~% {, A% H. m& G3 Y
fprintf('\tk6 = %.11f\n',k(6))
# k; g! g7 g7 T' i- E( Nfprintf('\tk7 = %.11f\n',k(7))
9 h# G" r) [- T9 Hfprintf('\tk8 = %.11f\n',k(8))
. ^9 k! ^% |4 ^9 kfprintf('\tk9 = %.11f\n',k(9))7 p% d' I9 |4 I: f0 W' c$ @% C
fprintf('\tk10 = %.11f\n',k(10))
2 m! s9 D; s( G# J$ Y( Hfprintf(' The sum of the squares is: %.1e\n\n',fval)! ^0 ]5 e& X8 l8 v) q
k_fm= k;4 w7 C# ?5 `) v1 b# F2 J8 `
% warning off1 {. }$ M: t9 s
% 使用函数lsqnonlin()进行参数估计
2 M2 V& ]7 ~, a. S% Z- S[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...' u I# W* K; ]" w# _; Q8 m' w
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); ( J! ]2 t }) Y" U: ^8 u; j
ci = nlparci(k,residual,jacobian);6 }8 G* h' P! V7 @9 b1 W- `1 l4 y: ?# a
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n'). |: C$ P$ v1 U: e3 s
fprintf('\tk1 = %.11f\n',k(1))
/ L8 t7 P0 n! N4 a# `0 V; Mfprintf('\tk2 = %.11f\n',k(2))7 q' B" F5 ^2 O" f7 U
fprintf('\tk3 = %.11f\n',k(3))- p# y4 z" j: }
fprintf('\tk4 = %.11f\n',k(4))
. J# w0 l; l! K k/ ]fprintf('\tk5 = %.11f\n',k(5))5 f+ o7 @3 ?3 K/ k. I
fprintf('\tk6 = %.11f\n',k(6))* L6 i4 L; t8 ^* G# X1 w D
fprintf('\tk7 = %.11f\n',k(7))& G+ l6 T* }4 u7 ^0 v
fprintf('\tk8 = %.11f\n',k(8))0 `' i* H( s' L& d, q
fprintf('\tk9 = %.11f\n',k(9))! ]9 x' d' r5 v8 p' V
fprintf('\tk10 = %.11f\n',k(10))
0 W1 \# b4 i. I5 b0 V5 e0 Wfprintf(' The sum of the squares is: %.1e\n\n',resnorm)
0 n0 F1 {3 `$ \' F, ?k_ls = k;
& C4 D! ~1 U2 H" ~: ooutput# q% i* Q! N2 ]4 s$ J8 x
warning off
1 M% r! P# t# ]" ~+ d0 s1 y% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计' ?8 A1 I7 G6 B6 T8 H1 Q, e- ?9 T
k0 = k_fm;& V$ ^0 X& D: w4 t
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
) {2 J- X1 \( B6 L) y' o lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); . c7 [1 l" D% I& ]9 s/ L
ci = nlparci(k,residual,jacobian);
; R! k! O) o9 X1 u y: dfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
3 R. @5 o+ T" |+ c/ t$ dfprintf('\tk1 = %.11f\n',k(1)). J' |' Q+ [/ P4 w' R
fprintf('\tk2 = %.11f\n',k(2)): L. b/ B& U4 O' {6 l
fprintf('\tk3 = %.11f\n',k(3))( d# Z/ @; C7 h$ P9 t, _9 _0 g
fprintf('\tk4 = %.11f\n',k(4))
) }5 L7 y/ q2 {1 v& n- rfprintf('\tk5 = %.11f\n',k(5))
J( O2 H# ], j5 ^8 A% f- ?fprintf('\tk6 = %.11f\n',k(6))$ D" k0 ~ @( f6 p W
fprintf('\tk7 = %.11f\n',k(7))" U, ^- K1 o+ w+ t+ W5 `0 _& d- E% R& b4 ?
fprintf('\tk8 = %.11f\n',k(8))
! w: |0 I) b1 i6 Z( q0 ifprintf('\tk9 = %.11f\n',k(9))' Q# E+ x. y, q2 \2 y! p! ^
fprintf('\tk10 = %.11f\n',k(10))
8 t+ ]) A7 c8 Lfprintf(' The sum of the squares is: %.1e\n\n',resnorm)
6 G$ g$ H/ b- \* b* d, \, u1 S) |k_fmls = k;
4 J+ l! p& O1 M1 H& y5 D& N9 Z; Soutput6 L' A$ c. _6 p0 ^; M/ y- _9 l
tspan = [0 15 30 45 60 90 120 180 240 300 360];
8 j9 Z# I( i% t; V[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); 0 y2 a& q. O2 J/ P4 U, q+ W; \
figure;1 i# l$ Y7 X9 u. E
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')4 h6 i& D% ?! F' Z7 m* o7 \. `
figure;plot(t,x(:,2:5));2 V$ a2 U7 S' W9 n; }
p=x(:,1:5)
& o; h2 s2 D0 l7 w# }; }8 Qhold on- F* i9 G& H& l
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
* i6 ]) I+ E. ?* S5 r/ n! b8 ~' M l2 j9 a
; }( ~2 x$ X1 H2 K3 Z+ j$ ]( E! [! R+ W' t
function f = ObjFunc7LNL(k,x0,yexp). R: R) h" h) y$ w
tspan = [0 15 30 45 60 90 120 180 240 300 360];
, H- B4 J8 i+ c' Q[t, x] = ode45(@KineticEqs,tspan,x0,[],k); ) n' `5 I3 c% f* V( l5 {
y(:,2) = x(:,1);
) X9 [( j7 a3 ?% `1 Q. L* i5 x! Ay(:,3:6) = x(:,2:5);
- B, T. G& U; n6 W# Xf1 = y(:,2) - yexp(:,2);& F1 V% |# |6 h6 y: @$ P* ]( J
f2 = y(:,3) - yexp(:,3);
: `+ D5 P" a) R. ^f3 = y(:,4) - yexp(:,4);
$ a8 j w6 r& U) d: If4 = y(:,5) - yexp(:,5);
- J' N: ~- C7 Q! T* lf5 = y(:,6) - yexp(:,6);( g5 |& S, ~& J& \( R
f = [f1; f2; f3; f4; f5];
% C! `# P b* B: _1 \' y
- e2 M! @8 M& u1 p8 N( I
" G7 F8 ?" i: l- s: z
G- z% V L9 Afunction f = ObjFunc7Fmincon(k,x0,yexp)& F& Z0 N( P" \4 w, V
tspan = [0 15 30 45 60 90 120 180 240 300 360];9 x' H! j9 f( U* S
[t x] = ode45(@KineticEqs,tspan,x0,[],k); 2 W/ O8 h' K3 x v
y(:,2) = x(:,1);
, ?$ u( P; ?" H$ Q. k/ ?& Q" Jy(:,3:6) = x(:,2:5);
2 ?! D3 N% A$ U9 X: nf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...6 s$ |) `- u! _5 G; \6 J
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
; \8 L/ n2 ]+ n9 Z + sum((y(:,6)-yexp(:,6)).^2) ;
4 c3 x: G, i' A# i( |! l6 N3 S( H4 L: ]1 L
5 F( m2 R0 n" e3 F `, O8 b) O( j/ M3 f E6 w i/ Y3 |
% ^/ z% {- E4 H v/ ?
function dxdt = KineticEqs(t,x,k)
8 L, A7 h% e6 U3 ^* ]$ w1 @dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);# t4 f" _. E6 m0 T+ R
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
: w) [: P; p6 L1 ?% E8 d" GdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
" b. K4 P; [( ]- o" n( mdLadt = k(7)*x(5);
% K; z3 N7 ^; \# b0 ydHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);# d: k+ K/ E* s' ^) b. u
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];8 o* H4 \ O9 w
' j( Y5 @( D0 g1 d1 b* v
) `; n% u* d2 ]: b* Q" P8 Z |
zan
|