QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2550|回复: 0
打印 上一主题 下一主题

[书籍资源] 基于机器学习的鱼雷推进控制用镁海水电池性能预测

[复制链接]
字体大小: 正常 放大
杨利霞        

5273

主题

82

听众

17万

积分

  • TA的每日心情
    开心
    2021-8-11 17:59
  • 签到天数: 17 天

    [LV.4]偶尔看看III

    网络挑战赛参赛者

    网络挑战赛参赛者

    自我介绍
    本人女,毕业于内蒙古科技大学,担任文职专业,毕业专业英语。

    群组2018美赛大象算法课程

    群组2018美赛护航培训课程

    群组2019年 数学中国站长建

    群组2019年数据分析师课程

    群组2018年大象老师国赛优

    跳转到指定楼层
    1#
    发表于 2020-11-6 11:46 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    基于机器学习的鱼雷推进控制用镁海水电池性能预测
    , E0 w; P1 o. C7 M

    - {) m8 F! Q) D9 V
    3 d& S! }$ {4 X6 |# Y6 c4 Q( g:针对鱼雷用镁海水电池阳极放电性能低以及传统“试错法”在材料设计中导致开发周期过长的问题。通
    7 _' c6 g- K1 V2 V& K6 b2 t过数据分析和机器学习的方法,采用线性回归(Linear Regression,LR),支持向量回归(Support Vector Regression,: p! k' N* H' {# O
    SVR)
    * m1 A/ Y9 G' F$ Q  G和神经网络(Multilayer Perceptron,MPL)算法对数据集进行训练建立模型,使用预测模型对镁基阳极材料的放电性能
    7 t0 r$ H% ]$ `进行预测,根据预测结果制备了 Mg-5.7Al-0.9Ge 合金作为镁海水电池用阳极材料。最后,通过电化学实验对 2 b3 N& k% ]2 {% R# |
    Mg-5.7Al-0.9Ge 合金在 3.5 wt%NaCl 溶液中的放电性能进行验证研究,研究发现该合金分别在 20 mA·cm-2、( n, _8 z  ?  p% V$ Q4 ^7 |
    50 mA·
    ; V$ O8 z6 q1 H' mcm-2 电流密度下,放电电位分别为 -1.641 V 和 -1.429 V,放电效率分别为 69.5%和 60.4%,其放电性能优于商用镁合
    7 Z, I# j  G9 J* ]金阳极材料 AZ61。结果表明,SVR 算法建立的模型预测能力最佳,具有较高的相关系数和较低的误差,为镁基阳极
    : W+ ^4 ~# p/ \& ]( f$ N材料的成分设计和快速开发问题提供指导。, i: u9 |- ~3 Q' n

    # `+ ^5 W' w0 ^( P
    # q: N8 [6 F! b- ]8 l4 ^! N  q

    基于机器学习的鱼雷推进控制用镁海水电池性能预测.pdf

    594.13 KB, 下载次数: 1, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-2 14:13 , Processed in 0.325879 second(s), 53 queries .

    回顶部