- 在线时间
- 129 小时
- 最后登录
- 2023-8-30
- 注册时间
- 2020-11-26
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 15942 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 4992
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 419
- 主题
- 395
- 精华
- 0
- 分享
- 0
- 好友
- 0
TA的每日心情 | 衰 2021-3-28 15:16 |
---|
签到天数: 25 天 [LV.4]偶尔看看III
 |
基于INLA_SPDE贝叶斯空间模型预测土壤有机碳含量 ?2 k% W8 b& `. ]1 p! ?7 V
1 E6 `* \# P; g" F* ]" _
采用嵌套拉普拉斯逼近积分—随机偏微分方程(INLA-SPDE)构建贝叶斯空间模型,用该模型对塔里木盆地北缘土壤有机碳含量的空间分布进行预测;采用Python语言PyMC库和R语言spBayes包构建基于马尔科夫链蒙特卡洛(MCMC)模拟的贝叶斯空间模型。比较了基于MCMC和INLA-SPDE两类贝叶斯空间模型的推断结果、预测准确性和计算时间,结果表明基于INLA-SPDE与MCMC的有机碳含量的贝叶斯空间模型具有相似的参数后验分布、后验预测分布以及预测准确度;INLA-SPDE模型比MCMC模型具有更快的运算速度。* Q2 P, S ]" e( a4 s: [# o
$ X e, i' c d3 l! s( l关键词:贝叶斯空间模型;嵌套拉普拉斯逼近积分;随机偏微分方程;马尔科夫链蒙特卡洛;土壤有机碳;空间预测: `# l! f" F, n6 k* C8 [- h: _
" ? @) C9 t$ _. q9 z' \4 H* y5 A5 |1 Y- e% E% M& G" e# M- k
' }9 b0 _# _$ q. I5 K2 A* f6 L |
zan
|