QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1836|回复: 0
打印 上一主题 下一主题

离散模型带示例讲解

[复制链接]
字体大小: 正常 放大

1171

主题

4

听众

2749

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2023-9-30 12:08 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
离散模型(Discrete Models)是概率模型的一种形式,用于建模和分析离散型随机变量的概率分布和相关性。离散模型适用于随机变量的取值集合是有限的或可数无限的情况。
( A5 H+ W% c& O下面介绍几种常见的离散概率模型:5 g5 A2 G7 |! L

5 m! q3 Q$ q$ `1 b! I1 l! T, x1.离散概率分布: 离散概率分布描述了离散型随机变量的取值与相应概率之间的关系。常见的离散概率分布包括伯努利分布、二项分布、多项分布、泊松分布等。这些分布用于描述二元事件、多元事件或计数类型的随机变量。8 C8 y; I. L$ G5 j( G. v
2.马尔可夫链(Markov Chains): 马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质。它将未来状态的概率分布仅依赖于当前状态的概率分布。马尔可夫链在序列数据建模、自然语言处理、图像处理等领域常被使用。
/ b7 a% X! d# B3 c- s3.隐马尔可夫模型(Hidden Markov Models,HMM): 隐马尔可夫模型是一种统计模型,用于对观察序列和隐藏状态序列之间的关系进行建模。观察序列是可见的,而隐藏状态序列则是不可见的,只能通过观察序列进行推断。HMM在语音识别、自然语言处理、生物信息学等领域具有广泛的应用。
8 Y. I" i% B- C- R; h/ X! k4.贝叶斯网络(Bayesian Networks): 贝叶斯网络是一种用图结构表示变量之间依赖关系的概率模型。它使用有向无环图描述变量之间的条件依赖关系,并使用概率分布表示每个变量的条件概率。贝叶斯网络在决策支持系统、风险评估和推断等问题上被广泛应用。
, _6 ^/ R" ~$ R& o' U; d/ b; ]& ~( V) r. r! l5 R! j+ q$ X" m
这些离散模型在不同领域中都有广泛的应用。它们提供了有效的工具和方法来建模和推断离散型数据的概率分布和相关性,从而有助于理解和解决各种与离散数据相关的问题。对于特定的问题和数据类型,选择适当的离散模型可以提供准确的分析和预测能力。& R6 T8 t; y) z, N8 B! [' Y9 u
8.1    层次分析模型
# K- w3 P$ t9 Y3 r8.2    循环比赛的名次7 ^1 E  g) W/ r; S$ e
8.3    社会经济系统的冲量过程
$ ^' r9 t! |  t" t8.4  效益的合理分配
  s  w5 v7 O" }9 t
8 q% Q3 o! `8 o' o' d9 C' ]* E# a) h+ d4 `/ S4 r( u! a$ s6 i& k
  Z3 S! C$ `9 @

第8章 离散模型.ppt

2 MB, 下载次数: 1, 下载积分: 体力 -2 点

售价: 5 点体力  [记录]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-5-12 09:17 , Processed in 0.412605 second(s), 54 queries .

回顶部