- 在线时间
- 1265 小时
- 最后登录
- 2025-6-24
- 注册时间
- 2022-2-27
- 听众数
- 33
- 收听数
- 0
- 能力
- 90 分
- 体力
- 171145 点
- 威望
- 9 点
- 阅读权限
- 255
- 积分
- 54471
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1809
- 主题
- 1193
- 精华
- 33
- 分享
- 0
- 好友
- 33
TA的每日心情 | 奋斗 2025-6-24 09:53 |
---|
签到天数: 613 天 [LV.9]以坛为家II 网络挑战赛参赛者 - 自我介绍
- 我是普大帝,拼搏奋进,一往无前。
 |
你好!我是陪你一起进阶人生的范老师!愿你成才!助你成长!
8 E! ^* _5 ]/ X" } G大家好!我是数学中国范老师,本次给大家带来一本《贝叶斯优化实战》,本书可以帮助你快速准确地找到最佳的机器学习模型配置。通过这本实用指南,将其先进技术付诸实践。这次有及其详细的超1000字介绍,点击链接即可查看。. q! t; Z' `$ v) I8 _5 e' @9 s
) Q5 ]1 N6 p6 g: y, A& A' j# h! P/ q
7 l' Y! R# k$ f$ [2 j% P- X注册登录后,右上角点击签到就会随机赠送10点左右的体力值!点击文件图标可以立即下载文件
, A. w3 ]7 X4 G新用户注册,可以联系我们的工作人员QQ南方:3242420264 乔叶:1470495151 淡妆:1917509892,帮你快速审核+修改用户组后,可以右上角签到获取体力值,一次注册,日后大量数学建模资源即刻拥有。
- c% r* g; z' [$ ^/ R: l
贝叶斯优化.zip
(20.66 MB, 下载次数: 1, 售价: 2 点体力)
2 R8 \1 Z% w! d6 i0 C
( e/ _8 a, b+ B5 u更多详情介绍
, L3 A6 l: ^, {/ j0 k {贝叶斯优化实战,向您展示如何应用最先进的贝叶斯技术来优化超参数调优、A/B测试以及机器学习过程的其他方面。本书使用清晰的语言、插图和具体例子证明了贝叶斯优化并不难!您将深入了解贝叶斯优化的工作原理,并学习如何使用最新的Python库来实现它。书中的易于重用代码样本让您可以直接插入到自己的项目中,立即上手。前言由Luis Serrano和David Sweet撰写。购买纸质书包括从Manning Publications获得PDF、Kindle和ePub格式的免费电子书。关于技术:在机器学习中,优化是关于在最少的步骤中实现最佳预测——最短的交付路线、完美的价格点、最准确的推荐。贝叶斯优化使用概率数学来高效微调ML函数、算法和超参数,尤其当传统方法太慢或太昂贵时。关于本书:《贝叶斯优化实战》教您如何使用贝叶斯方法创建高效的机器学习过程。在本书中,您将探索训练大型数据集、超参数调优和导航复杂搜索空间的实用技术。这本有趣的书包括引人入胜的插图和有趣的例子,如完善咖啡的甜度、预测天气,甚至揭穿心灵感应的主张。您将学习如何在多目标场景中导航,考虑决策成本,并应对成对比较。适用于读者:适合对数学和统计学有信心的机器学习从业者。
6 e0 F) V8 S9 z. y8 H6 p9 r关于作者:Quan Nguyen是圣路易斯华盛顿大学的研究助理。他为Python软件基金会撰写文章,并撰写了多本关于Python编程的书籍。目录:1 贝叶斯优化简介 第一部分 使用高斯过程建模 2 将高斯过程视为函数分布 3 使用均值和协方差函数自定义高斯过程 第二部分 使用贝叶斯优化做决策 4 使用改进基策略细化最佳结果 5 使用土匪风格策略探索搜索空间 6 使用信息理论的熵基策略 第三部分 将贝叶斯优化扩展到特定设置 7 使用批量优化最大化吞吐量 8 使用约束优化满足额外约束 9 使用多保真优化平衡效用和成本 10 使用偏好优化从成对比较中学习 11 同时优化多个目标 第四部分 特殊的高斯过程模型 12 将高斯过程扩展到大型数据集 13 将高斯过程与神经网络结合封底简介:《贝叶斯优化实战》教您如何从头开始构建贝叶斯优化系统。这本书将最先进的研究转化为您可以轻松实践的可用技术——所有这些都配有有用的代码样本。您将通过吸引人的示例来提高对贝叶斯优化的理解——从预测天气到找到咖啡的最佳糖量,甚至决定某人是否有心灵感应!在此过程中,您将探索具有多个目标的情景,每个决策都有自己的成本,以及当反馈以成对比较的形式出现时。有了这些技术的集合,您将准备好为一切找到最佳解决方案——从运输和物流到癌症治疗。适用于读者:适合对数学和统计学有信心的机器学习从业者。关于作者:Quan Nguyen是Python程序员和机器学习爱好者。他对涉及不确定性的决策问题感兴趣。Quan已经撰写了多本关于Python编程和科学计算的书籍。他目前正在圣路易斯华盛顿大学攻读计算机科学博士学位,他在那里研究机器学习中的贝叶斯方法。; d2 z' D7 s' P4 q8 B
, N, L. f8 x* M; @: u* E* O
, K3 A2 x' z- a0 u1 N6 l
1 y7 s/ R9 r3 d8 O, j! Z2 s4 E
6 O' f, Q$ F, Q9 h1 K. Y4 }5 G7 w& n v5 f& q3 Q* G: O
9 P) v1 z, X7 O9 l1 U+ s/ W( g |
zan
|