原题如附件所示: % s' E) j6 @1 Y
0 K& N: V* K" s$ u 题目要求判别病人的方法,以及确定主要的因素。 3 n G6 X. n+ S: V7 C$ E. s+ _
首先对题目给出的数据进行处理,将表一前面30个数据每种元素求平均值得到病人体内各种元素的平均含量。
. |9 k* P4 t3 v& p _: a再对表一后面30个元素求平均值,得到健康人体内个元素的平均含量,结果如下: ; S) y/ J! N- i, K1 t! {/ C# z' o
) R8 K/ D9 x, a6 k
9 p( C( K4 c* l- k; {, T9 _; {4 n5 P将ca k作为自变量,sorh作为因变量,进行回归。(得到的模型为线性概率模型,见《经计量学精要》,古亚拉提) + _" l, z. D% m0 ~+ U6 U
回归的代码如附件里的m文件所示: " Y, c2 G) |$ B0 j3 R5 g( Q, ?
' J: c/ g. I' g9 W; _ 运行的结果:
) F% Q' w: D$ d, j+ [b = ) x: F" J9 G/ ]+ c" j- V! W/ L
0.85943269933448 -0.00026521067844 0.00045376919071 & g8 Y1 Z( \0 O3 x: L' v2 e* h6 L( C
bint = C; g* \! t# U ~" u7 v j4 J
0.68868335685722 1.03018204181175 -0.00033716969449 -0.00019325166239 -0.00002536250203 0.00093290088345
8 U% E1 S5 {( x5 m* K w4 B# J r = 4 E* J6 v' N6 p+ w6 `/ c' D
0.24499009043804 0.24298645516293 0.22596382129192 0.26974523197013 0.26938499769464 0.20134048077000 0.26428218646615 0.24546068238966 0.24204749612136 0.26329869754702 -0.30239364378778 0.22418882468333 0.36151397969142 0.27800877719166 0.22562971091175 0.25817997058727 0.34088284102996 0.47584435732540 0.39924147789994 0.10818014268404 0.03268403910683 0.23266006146459 0.42213189599121 0.15295625201459 0.32936275116498 0.23035596133112 0.27508838782562 0.19186969392530 -0.04387393419007 0.37180169649244 -0.28881576082096 -0.54037252177113 -0.47247370212743 -0.49482518478078 -0.27629228737278 -0.08212896037942 -0.34347303417696 -0.60782985983678 -0.50802211576599 0.82648437263390 -0.60023746186573 -0.21743324654913 -0.59323300437026 -0.32095218604696 0.10204363196572 -0.41168153438852 -0.22705964801276 -0.40337580412737 0.50019536866747 0.05178812516079 -0.08624980592198 -0.28795869072225 -0.34221336479873 -0.47546878418730 0.13032287365765 -0.06744638245026 0.12456342765303 -0.33184299743823 -0.32238525982281 -0.46743958519949
& C! y+ H* o5 P; b4 R# ^ rint = 1 b0 g; I5 d8 n8 e0 i1 O3 Z2 z
-0.45268049797649 0.94266067885257 -0.45471901948541 0.94069192981128 -0.47070402952424 0.92263167210809 -0.42749772755413 0.96698819149440 -0.42530394206593 0.96407393745521 -0.49119576109825 0.89387672263825 -0.42929291658125 0.95785728951356 -0.45189766754183 0.94281903232114 -0.45372849228423 0.93782348452696 -0.43273992792445 0.95933732301849 -0.72468928783798 0.11990200026242 -0.47284729549112 0.92122494485777 -0.33268274520904 1.05571070459188 -0.41631507827795 0.97233263266126 -0.47200984810697 0.92326926993047 -0.43768034176985 0.95404028294440 -0.35542375701992 1.03718943907983 -0.21577903322429 1.16746774787510 -0.29583373430114 1.09431669010102 -0.57933084093047 0.79569112629854 -0.65245595836408 0.71782403657773 -0.46476517082366 0.93008529375283 -0.26956573150114 1.11382952348357 -0.53878440595437 0.84469690998355 -0.36446419214936 1.02318969447933 -0.46717750756131 0.92788943022355 -0.41904949253371 0.96922626818495 -0.50456761920479 0.88830700705539 -0.68119689782050 0.59344902944035 -0.32210495077523 1.06570834376012 -0.98555305629226 0.40792153465034 -1.22681878775805 0.14607374421580 -1.16263827940142 0.21769087514656 -1.18559446484527 0.19594409528372 -0.97334318994612 0.42075861520057 -0.77754513466812 0.61328721390927 -1.03962716392182 0.35268109556790 -1.28897250636556 0.07331278669200 -1.19830502970058 0.18226079816860 0.27837161793377 1.37459712733402 -1.28240289420555 0.08192797047410 -0.91514787090337 0.48028137780510 -1.27825077913241 0.09178477039189 -1.01775836842798 0.37585399633405 -0.58172439829518 0.78581166222663 -1.10573438258273 0.28237131380568 -0.92471005188033 0.47059075585482 -1.09775532080452 0.29100371254977 -0.13489900871102 1.13528974604595 -0.63713063617393 0.74070688649551 -0.78029430110123 0.60779468925727 -0.98542624488175 0.40950886343724 -1.03853703868559 0.35411030908814 -1.16731658432257 0.21637901594796 -0.55440318902529 0.81504893634058 -0.76249963681796 0.62760687191744 -0.55996646809892 0.80909332340498 -1.02839058696323 0.36470459208677 -1.01901501263124 0.37424449298562 -1.15831993205002 0.22344076165104
6 i7 Q! J/ d# @( d7 p; [ s =
7 ]! W2 H6 I8 k, L 0.53107910778697 32.27784221875193 0.00000000042300 0.12340023479290
6 t7 Z7 [8 }. G6 d! q$ L得到回归方程: ( }5 J+ R ?# ^3 T, G
sorh=0.85943269933448-0.00026521067844.*ca+0.00045376919071.*k
/ S/ S% D; B7 X4 F8 ~这就是我们需要的模型。
. L. p' {* f3 r; e$ K# V: E然后判断表二中的30个病例。
1 |" O' C3 U# y% T# W8 B5 [matlab代码如下:
$ `5 y# Y- ?, y- g( I' S7 Oca=[323 542 1332 503 547 790 417 943 318 1969 1208 328 265 2220 1606 672 1521 1544 1062 2278 2993 2056 1025 1633 1068 2554 1211 2157 3870 1806]; k=[179 184 128 238 71 45.8 49.5 155 99.4 103 1314 264 73 62 40 47 36.2 98.9 47.3 36.5 65.5 44.8 180 228 53 77.5 134 74 143 68.9]; sorh=0.85943269933448-0.00026521067844.*ca+0.00045376919071.*k 6 \( s c8 {$ } B
运行结果如下:
3 M( |/ @8 n7 {# y3 ~6 E0 wsorh = * \9 o# _3 q5 I, c4 G
Columns 1 through 5 " _+ y: |- ~6 E
0.85499433533545 0.79918204271064 0.56425453206328 0.83402879546814 0.74658007076821
$ j/ ^8 Y' f2 @1 q" _5 g Columns 6 through 10 % H" G) P5 c. L- [6 a3 k9 L8 h# S
0.67069889230140 0.77130142136514 0.67967325412561 0.82020036114713 0.38397110012925
! F' t3 G4 L8 O0 E3 m: W) l Columns 11 through 15 # ^# x$ D2 [& J) x6 j9 e9 J2 d. ?
1.13531091637190 0.89223866315360 0.82227702046971 0.29879868302170 0.45165511738824
7 x9 M; N) l' j7 q1 u; u Columns 16 through 20
1 l& z1 |- V) m7 u 0.70253827538617 0.47247370213094 0.49482518478434 0.59924224155178 0.27184534930907
$ O$ @+ p& b0 K( g2 g! t$ K/ e Columns 21 through 25
# w8 W* L. S% e6 ~8 V 0.09537902075506 0.33448840420565 0.66927020826128 0.52980303692384 0.60023746186819
3 {; l1 j9 C" v S* |; r Columns 26 through 30
6 b) c. t1 u8 A 0.21725173887874 0.59906763929878 0.32095218605194 -0.10204363195679 0.41172691131176
# e# }' V, c% f! a2 |0 t& C( n定义: ; X' J, `# C: [
凡是sorh值大于0.55的为患有肾病,否则为健康
7 T1 B! x* j4 s9 b T可以从结果中得到30个病例中的患病者。 " S2 N# t" @5 ?! K: t4 ?
9 e" e5 A: O W* z" w2 X+ H' S3 i
+ x- a# B+ S; x[此贴子已经被作者于2008-8-12 13:57:50编辑过] |