QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2630|回复: 1
打印 上一主题 下一主题

f[f(x)]=6x-f(x). 求函数表达式

[复制链接]
字体大小: 正常 放大
math111        

1

主题

6

听众

3

积分

升级  60%

该用户从未签到

自我介绍
..
跳转到指定楼层
1#
发表于 2016-7-22 16:56 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
本帖最后由 math111 于 2016-7-22 17:13 编辑 , b; P- Y' U* ]; w) ?
- |# n, L1 @. I6 C2 M
设\(f(x)\)是定义在\((0,+\infty)\)上的正值函数,且有\(f[f(x)]=6x-f(x).\)求函数\(f(x)\)的表达式。; C2 `4 [  Q, _) j, c5 |' A
大神求解,书上一道例题,但是原来的答案我看不懂。。求简单的解法。
: F) ]" A' o; D1 z& U) Y3 o; {2 ]" r3 ^: H1 C5 U
贴一下原书的答案吧0 Z* O3 V9 W0 v
------------------
. e+ i4 m4 U9 i$ i对任给实数\(x>0\), 记\(a_0=x\), 以及\[a_{n+1}=f(a_n) \quad (n=0,1,2,\cdots)\]
! E. ~0 G" t# r2 P) R8 t代入方程可得\(a_{n+2}+a_{n+1}-6a_n=0(n=0,1,2,\cdots)\)解其特征方程
$ F+ P; \5 X, n6 ?8 T\({\lambda}^2+\lambda -6=0, \) 即\((\lambda+3)(\lambda-2)=0\),可知\(a_n={(-3)^n}c+{2^n}d\). x" u+ z' _- e# Q  F# E- X2 K
根据\(f(a_0)>0\),又得\(c=0\) ,从而有\(a_n=2^nd\)。易知\(d=a_0\),我们有\(f(a_0)=a_1=2a_0\),即\(f(x)=2x\).显然此解释唯一的。# p' y) B% e' a  l! N
7 a' u' u2 A' ^9 h+ T

/ @. O+ u, j/ U6 C. Z  |  w1 j2 _# d5 w0 z0 q, f7 N8 T9 ?4 k# J
' H5 [! j% l( |
/ F" t6 }2 u# O% R. O
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
jiang790        

1

主题

7

听众

38

积分

升级  34.74%

  • TA的每日心情
    郁闷
    2017-4-14 15:12
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    自我介绍
    数学爱好者
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-4 01:06 , Processed in 1.680595 second(s), 64 queries .

    回顶部