QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3958|回复: 3
打印 上一主题 下一主题

有序群/有序交换群

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-9 13:53 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    In abstract algebra, a partially ordered group is a group (G,+) equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if a ≤ b then a+g ≤ b+g and g+a ≤ g+b.
    ' ?! T$ ?7 A/ a$ z6 E3 G+ l% g( t
    An element x of G is called positive element if 0 ≤ x. The set of elements 0 ≤ x is often denoted with G+, and it is called the positive cone of G. So we have a ≤ b if and only if -a+b ∈ G+.3 p( t! A/ V# m5 B) i
    9 |+ v- W& V$ h
    By the definition, we can reduce the partial order to a monadic property: a ≤ b if and only if 0 ≤ -a+b.1 e6 @( [* `8 _- k
    ) K) G  d* b% y, J
    For the general group G, the existence of a positive cone specifies an order on G. A group G is a partially ordered group if and only if there exists a subset H (which is G+) of G such that:+ H: H7 P( L1 T! z, f; E) L  c
    " P2 T0 g) ?# H" V
    0 ∈ H
    1 u7 l, n; w% S& i6 D4 k- zif a ∈ H and b ∈ H then a+b ∈ H
    : K1 d4 P8 x6 d/ n& ~if a ∈ H then -x+a+x ∈ H for each x of G 5 K4 [' \$ j! {5 a  F5 w
    if a ∈ H and -a ∈ H then a=0 ; Z4 G& n9 l3 ]0 j  o
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    有序交换群系指一对 (Γ, > ),其中 Γ 为交换群, > 为其上的一个二元关系,且满足如下条件:* K( m. r: s/ y$ G

    " E! [1 C0 Y' Y) @5 Q若 a < 0,则 − a > 0。
    7 V8 W4 g2 P# S' C! _若 a,b > 0,则 a + b > 0。
    / b; m/ J: g  m5 }, ^7 n* k1 L  L
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    Examples) R0 L2 `9 F" g: K' {2 @
    An ordered vector space is a partially ordered group
    + [# y9 b  k( e+ f0 QA Riesz space is a lattice-ordered group 4 h6 d5 K- i% d
    A typical example of a partially ordered group is Zn, where the group operation is componentwise addition, and we write (a1,...,an) ≤ (b1,...,bn) if and only if ai ≤ bi (in the usual order of integers) for all i=1,...,n.
    $ N- n/ L1 K9 P1 H+ q( m3 iMore generally, if G is a partially ordered group and X is some set, then the set of all functions from X to G is again a partially ordered group: all operations are performed componentwise. Furthermore, every subgroup of G is a partially ordered group: it inherits the order from G.
    1 J( H8 _0 j* F+ ^4 ?. v0 N序线性空间是有序群. W6 t" ~' \3 d4 A! Z1 M" y; E( q( p  C
    " ]! Q, S" b- R1 u% _& L) u" b
    Z/R/R*都是有序交换群
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3288

    积分

    升级  42.93%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-25 05:27 , Processed in 0.638125 second(s), 69 queries .

    回顶部