- 在线时间
- 5024 小时
- 最后登录
- 2022-11-28
- 注册时间
- 2009-4-8
- 听众数
- 738
- 收听数
- 1
- 能力
- 23 分
- 体力
- 76953 点
- 威望
- 96 点
- 阅读权限
- 255
- 积分
- 27012
- 相册
- 1
- 日志
- 14
- 记录
- 36
- 帖子
- 4293
- 主题
- 1341
- 精华
- 15
- 分享
- 16
- 好友
- 1975

数学中国总编辑
TA的每日心情 | 衰 2016-11-18 10:46 |
---|
签到天数: 206 天 [LV.7]常住居民III 超级版主
群组: 2011年第一期数学建模 群组: 第一期sas基础实训课堂 群组: 第二届数模基础实训 群组: 2012第二期MCM/ICM优秀 群组: MCM优秀论文解析专题 |
2#
发表于 2011-11-28 10:48
|只看该作者
|
|邮箱已经成功绑定
matlab下面的kalman滤波程序
T' p9 y- V, ~clear N=200; w(1)=0; 0 e( o m4 y& W. O
w=randn(1,N)
1 v9 w: B4 b8 G/ T$ D1 Rx(1)=0;
! m7 j5 y1 }/ g7 W( Za=1;
' R/ g+ ^8 K& u" t, Y) [for k=2:N;
7 Z, r1 a2 _! z* Wx(k)=a*x(k-1)+w(k-1); + d+ x! M& A$ D0 }/ `
end 6 D8 Y. X! r, A% M) f+ N3 e, V* {) p# L
V=randn(1,N);
3 L, L% X8 a% U# a. J3 l/ eq1=std(V); , D* f/ f0 |/ H! K$ o$ C6 Y% r ~* A
Rvv=q1.^2; , t. b5 d: o3 y7 p6 Y* j
q2=std(x); / ^: ?2 f1 T7 D1 y' ?& v
Rxx=q2.^2;
' _# K2 ~- A( m: J$ wq3=std(w); * v6 P+ P# ~$ ^1 j3 y
Rww=q3.^2; - N$ n) v" f+ a9 D9 L* {6 z
c=0.2;
& \5 O0 L: D. [ a) I/ OY=c*x+V;
; v* l4 R$ {4 n5 N- v+ ?9 op(1)=0;
7 Z2 Y2 R- V0 B! a9 i7 V+ _s(1)=0;
. }- w; K) W7 ?* ?% c9 W5 U- [for t=2:N;
- X, v; V2 b6 b2 \p1(t)=a.^2*p(t-1)+Rww;
" k5 A x- ^9 T! Z- b0 p. g/ ub(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
; H5 Z. E, d+ R! b n( bs(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
) X1 b5 _- K) q) D# }. c3 ? `, _p(t)=p1(t)-c*b(t)*p1(t); $ m) z/ k3 K: V6 W- n* w2 f; P
end
. [' {! `3 \* ?8 it=1:N;
0 L# R" Y9 E& T: b# z/ xplot(t,s,'r',t,Y,'g',t,x,'b');
: @" u0 Y# f9 a! R1 Jfunction [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin) , j# B/ u5 ^8 R5 y9 B
% Kalman filter.
, F- j1 \& G8 m" i4 S; Z% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...) : |" r% r/ Q7 M/ G1 f) k4 v+ A
% ' U! ]: @) `1 v8 R; ~" u
% INPUTS:
9 c7 h+ j1 e4 t' [+ S% y(:,t) - the observation at time t
8 H( [5 n8 W, C% A - the system matrix / s6 F) [3 {* ~
% C - the observation matrix ) b: W- I( _8 P
% Q - the system covariance
: f8 T1 x! I8 c4 C: V) G; b% R - the observation covariance
: y$ {) `9 p, i& t- S& A, O" r% init_x - the initial state (column) vector
* W% f5 e/ G( G% g* }4 j% init_V - the initial state covariance ; y% r; A! U/ @3 r
% ) U8 o0 a) n" M7 o
% OPTIONAL INPUTS (string/value pairs [default in brackets]) 1 O7 s K: x G) {2 R8 M
% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
: L& _7 L: O4 F# o' A% In this case, all the above matrices take an additional final dimension,
$ o% Q) t, {0 y0 _- @% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m). 6 i4 X9 V: @3 K% D ]
% However, init_x and init_V are independent of model(1).
/ j" W+ K! g# h0 S! C$ n9 b7 W% 'u' - u(:,t) the control signal at time t [ [] ] ( {+ a& Y) Z2 W5 B
% 'B' - B(:,:,m) the input regression matrix for model m
@- q5 R9 u; Y+ D& ]6 i%
% v/ B) F% Y3 L8 k' o4 l) u' q% OUTPUTS (where X is the hidden state being estimated)
8 F: u2 {& H- q( c' I% x(:,t) = E[X(:,t) | y(:,1:t)]
/ W0 ]" i7 C3 a6 q% X# j9 ]9 W3 J% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]
( R3 E! D5 r. B% B! }% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2 ! A8 c4 {) x3 I3 y+ g) D
% loglik = sum{t=1}^T log P(y(:,t)) 6 N. d z. [8 G+ B/ m, F- f# l: u
% 8 [: R7 T7 O2 M+ I; V
% If an input signal is specified, we also condition on it:
: [8 f( _5 M+ A0 \) k% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)] & Q) ^$ l* `6 x8 H' T* G
% If a model sequence is specified, we also condition on it:
/ [1 }0 q) T- d& d% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]
$ P/ ]" h' ?4 q+ ?[os T] = size(y); 5 f& j1 Q$ A& ]% e
ss = size(A,1); % size of state space
3 ]/ C4 Z+ w5 R* m. o% set default params
9 z% n% j( V" emodel = ones(1,T);
2 t; u( m0 a x- f( _2 S; su = [];
I1 r5 ~% o; r6 y+ N8 J9 T/ ]B = []; , g$ n5 ^+ |8 k0 p! u: o7 T; g
ndx = [];
! g. g8 t( Q. n# @& targs = varargin; 1 n6 b, w! ^9 ~" i: Z! U
nargs = length(args); - Z$ C# x* {9 r
for i=1:2:nargs
) _, c# P; p4 T7 R7 v! O" dswitch args
Y9 v$ t/ z5 _3 gcase 'model', model = args{i+1}; # _! F, }1 U* n; J
case 'u', u = args{i+1}; # _0 V4 F& C. f% p$ I9 ]3 j& d! J
case 'B', B = args{i+1};
; `6 m* i, E% q. Y) mcase 'ndx', ndx = args{i+1};
1 _. `1 O' I T8 w5 U( jotherwise, error(['unrecognized argument ' args])
7 d: [# M) k* O# r. hend ! B, ^5 b5 R4 c" L* ^2 L4 D( j4 P
end : @1 D" A1 c3 ?+ w
x = zeros(ss, T); , `# K0 [6 }+ m- K6 w& ^0 p
V = zeros(ss, ss, T);
0 u: R2 M1 _7 \8 ?VV = zeros(ss, ss, T);
0 ]9 b- v9 Z+ R9 Bloglik = 0;
% t6 r5 u" N0 U8 Ufor t=1:T m = model(t);
% U) T: W# W4 D5 O aif t==1 %prevx = init_x(:,m); ) @# c; m) y, R) ^( J5 S
%prevV = init_V(:,:,m); . k) u( O$ }, L q& q
prevx = init_x;
( R2 M1 R, ^9 `8 l2 v, NprevV = init_V;
) [3 a' V& a; P, a% yinitial = 1; / ^0 H; A: B6 Q( h! R4 ?
else prevx = x(:,t-1);
- `0 u) Y, N, `prevV = V(:,:,t-1); 9 v% O4 ?3 j( t) t3 ~8 _
initial = 0; 9 k; p6 F' a% |
end % L- \3 a8 L( y, V! h
if isempty(u) # E- P' g: e- U& q3 H F
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
( x3 A* [2 i0 n9 ?$ kkalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial); else / O3 G, G9 N+ x' ~
if isempty(ndx) [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
* m+ w: W4 S! q0 m3 R/ N# T9 b; B kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 'initial', initial, 'u', u(:,t), 'B', B(:,:,m)); 2 i+ W' A6 N. P
else
2 `4 G! M/ W! {6 Ei = ndx;
4 z9 n; w- Z) ^1 \0 w% copy over all elements; only some will get updated x(:,t) = prevx;
1 R' M# Y+ M eprevP = inv(prevV);
2 a& z+ y1 c6 l0 x7 CprevPsmall = prevP(i,i); & |! ~& \# k# n
prevVsmall = inv(prevPsmall); + b8 I6 A; t7 K) }
[x(i,t), smallV, LL, VV(i,i,t)] = ... kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ... 'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
3 K5 D. p1 o) o2 ^ x9 |- o* ~smallP = inv(smallV);
& J2 L" O, @! n! w' w/ ~/ N% sprevP(i,i) = smallP;
4 i `- j p5 CV(:,:,t) = inv(prevP); 3 G$ S$ E6 o2 }) ~/ O1 ?6 F
end & O0 _3 r) [* ]0 J( {8 e9 z# D
end ! G" A8 U+ q: i/ J
loglik = loglik + LL; ! ?+ z7 X7 Y9 `( w9 L7 r
end |
|